Abstract
A certain volume of risks is insured and there is a reinsurance contract, according to which claims and total premium income are shared between a direct insurer and a reinsurer in such a way, that the finite horizon probability of their joint survival is maximized. An explicit expression for the latter probability, under an excess of loss (XL) treaty is derived, using the improved version of the Ignatov & Kaishev's ruin probability formula (see Ignatov Ignatov, Kaishev & Krachunov. 2001a) and assuming, Poisson claim arrivals, any discrete joint distribution of the claims, and any increasing real premium income function. An explicit expression for the probability of survival of the cedent only, under an XL contract is also derived and used to determine the probability of survival of the reinsurer, given survival of the cedent. The absolute value of the difference between the probability of survival of the cedent and the probability of survival of the reinsurer, given survival of the cedent is used for the choice of optimal retention level. We derive formulae for the expected profit of the cedent and of the reinsurer, given their joint survival up to the finite time horizon. We illustrate how optimal retention levels can be set, using an optimality criterion based on the expected profit formulae. The quota share contract is also considered under the same model. It is shown that the probability of joint survival of the cedent and the reinsurer coincides with the probability of survival of solely the insurer. Extensive, numerical comparisons, illustrating the performance of the proposed reinsurance optimality criteria are presented.
Volume
No. 6
Page
401-430
Year
2004
Categories
Actuarial Applications and Methodologies
Dynamic Risk Modeling
Reinsurance Analysis
Business Areas
Reinsurance
Publications
Scandinavian Actuarial Journal