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Agenda

knowledge of some machine learning

Context of machine learning in pricing methods that may be used to improve
GLM results and/or offer valuable

of P&C insurance pricing

Trees, random forests and GBMs

Conclusions

Q&A

© 2017 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson clientuse only. WiIIisTowers Watson LI1'1"1.1 2



Applications of machine learning in the insurance sector
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Focus of today’s talk
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This iIs not new....

Data enrichment GLMs in demand models Integrating cost and demand
Few fact?hrs(,jsimple GLMs in auto risk models GLM refinement & LOB expansion More data enrichment
methods
1990s 2000s 2010s 2017

Other “Non-GLM"” models i
Distributed Data Machi Integrated
Big Data sualisati achine :
visualisation Iearning environments

storage/ tools and services
Hadoop

Free software Data stream
NoSQL environments, and real-time
databases analytics processing
libraries supporting loT

Hyper scale
parallel
computing
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What are these methods?

Ensemble Classifications " " Regression Grad|¢nt
Earth Boosting
Methods Trees Trees :
Machines
K-nearest : Neural . Random
Neighbors SEHB N Networks Naive Bayes Forests

K-Means Principal Support Vector Ridge
. Components . :
Clustering . Machines Regression
Analysis
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Does it work?

© 2017 Willis Towers Watson. Al rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson clientuse only. Wi"iSTOWGI'S Watson LI'1°1.1 7



How do you measure value?

Data Gain Curve

Gini

Gini

ZU.?EW

Cumulative Fitted(2s)

Cumulative Weight{®)

Rank hold out observations by their fitted values (high to low)

Plot cumulative response by cumulative exposure

A better model will explain a higher proportion of the response with a lower proportion of exposure
...and will give a higher Gini coefficient (yellow area)
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Example results

Model Gini

GLM
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Example results

Model Gini

GLM
New Model
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Example results

Gini
improvement

Model Gini

GLM
New Model
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Example results

Model

Gini

GLM (main factor removed)

Gini
improvement

Gini rank

GLM (minor factor removed) 0.322 -1.3% 3
GLM 0.327 0.0% 2
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But...

Think of a model...
Multiply it by 123
Square it

Add 74%: billion

...and you get the
same Gini coefficient!
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Double lift chart
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Financial value estimate

= Errors in insurance pricing are not symmetrical
= Financial benefit can be estimated
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Example results

Results redacted
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Financial value vs Gini
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Is it really all about the method?

The problem dimension

Original Newly defined
problem, problem,
solved with solved with
original original
methods methods

Original
problem,
solved with
new techniques

The method dimension
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Where is the value?

The problem dimension

$ $$

The method dimension

$$
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The problem dimension

The problem dimension

Original Newly defined
problem, problem,
solved with solved with
original original
methods methods

The method dimension
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What are these methods?

Ensemble Classifications " " Regression Grad|¢nt
Earth Boosting
Methods Trees Trees :
Machines
K-nearest : Neural . Random
Neighbors SEHB N Networks Naive Bayes Forests

K-Means Principal Support Vector Ridge
. Components . :
Clustering . Machines Regression
Analysis
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Choosing a method

Dimensions of choice
Predictive power

Analytical
time and Interpretation
effort

Table
implementation

Execution speed
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Analytical
time and Interpretation
effort

Table
Implementation

Execution speed
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What are these methods?
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Farameter 2

Penalized Regression _
GLM Lasso Ridge

f(x) = g’}(X.B) where B estimated by minimizing ~ L(B|X,y)|+H4, z_l.Bil U Z_Biz
l l

Elastic Net
Elastic Net Lasso ;|6
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Heavily penalize large parameters, . Penalty reduces insignificant parameter
Mix of the two
but does not reduce parameters to zero

values to zero - useful for variable selection
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Penalized Regression
Parameter selection

Minimize: L(B|X,y) + 4 ZlBil + A, X B
= Penalty parameters can be re-written: A, =4ia, A1,=1 (1_7“)

= ¢ controls the mixture between Lasso (@ = 1) and Ridge (a = 0)
= A controls the overall size of the penalty
= A, a selected using cross-validation

= Factors automatically

o Optimal (a, 1)
selected from initial set! combinatié)n
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Penalized Regression
Case study — vehicle classification

Physical facticity Mechanical nature
E.g., height, length, weight E.g., engine size, fuel type

a%%% § 1 FT PER MIN
8
k|

=
2
&
E

33,000
% |

CHETOmE :\W

FRIIITI

Qualitative descriptors Performance
E.g., body type, model range E.g., maximum speed, torque, BHP

© 2017 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson clientuse only. WiIIisTowers Watson LI1'1"1.1 27



Penalized Regression
Case study — vehicle classification

Results redacted
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Deploying Penalized Regression

Same as GLMs!

_ Multiplier VehcheGroup Multiplier Multiplier

2.12 0.83 Male 1.00

20-25 1.74 2 0.91 Female 0.97
25-30 1.09 3 0.96
30-39 1.00 4 1.00
40-49 0.95 5 1.05
50+ 0.06 6 1.17
7 1.25
8 1.42
9 1.89
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Predictive
Power

time and Interpretation
effort

Penalized

Regression

Table

2ASETICI il Implementation
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What are these methods?

Gradient
Boosting
Machines

Classifications Regression
Trees

Random
Forests
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Decision Trees

Group

]
]

=
—
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Random Forests

A tree A random forest

fi(0) B
FeO=5) . i)

n=1

Group < 5?
Yy | N - | -

Y N 1

| N
Group < 15?
Yy | N
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Gradient Boosting Machine or “GBM”

A tree A GBM
fi(x) N

n=1
Group < 5?
Yy | N
Age < 407
Y N
Group < 15?
Y | N
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Gradient Boosted Machine or “GBM”
Four main assumptions

A Learning rate/ “shrinkage”

=  Amount by which the old model predictions are
varied for the next model iteration

= New model =
Old + (Prediction x Learning rate)

Interaction depth

= Number of splits allowed on each tree
(or the number of terminal nodes — 1)

N Number of trees (iterations) allowed
Bag fraction

= Trees are fitted to a subset of the data (the bag
fraction) on a randomized basis

= Additional noise-reduction can be achieved by
using a random subset of the available factors
at each iteration
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Gradient Boosted Machine or “GBM”
Four main assumptions

A Learning rate/ “shrinkage”

=  Amount by which the old model predictions are
varied for the next model iteration

= New model =
Old + (Prediction x Learning rate)

Interaction depth o |

= Number of splits allowed on each tree ﬁ
(or the number of terminal nodes — 1)

N Number of trees (iterations) allowed
Bag fraction

= Trees are fitted to a subset of the data (the bag
fraction) on a randomized basis

= Additional noise-reduction can be achieved by
using a random subset of the available factors
at each iteration

validation error

Best result shown by this point on
brown line (interaction depth 2 and
learning rate 2% in this case)

Number of trees

saozn
S0k
0020
S002H
S002E
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What does a GBM |

ook like?
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What does a GBM look like?
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GBM - value add

Results redacted
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What are these methods?
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Ensemble

Methods




Adding an ensemble

Results redacted
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What about a modelled down GBM?

Results redacted
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What about an automated GLM?
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What about an automated GLM?

Results redacted
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AD Froquency

Partial Dependency Plot Partial Dependency Plot
PRI ency P

Partial dependency plots etc

Partial Dependency Plot - Age of Main Driver
0.059

0.058
0.057:

0.056

0.055

L Partial Dependency Plot Partial Dependency Plot
Vehicle Age x Vehicle Group (full interaction) Vehicle Age x Vehicle Group (marginal interaction)

».

&

0.082

0.051

0.049

Rolativity

0.048

0.047

18 20 22 24 26 28 30 32 34 36 38 40 42 44 456 48 50 52 54 56 53 60 62 G4 66 68 70 72 74 76 78 80 82 84 86

Age of Main Driver

1.2
0.00
1.1
-0.014
1.0
-0.02
20 40 60 80 20 40 60 80
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Deploying GBMs

Model down into multiplicative
tables via GLMs

Burnin,
Age Exposure 9

Vehicle

Exposure

Burning

Analytical
environ-

ment

Cost Group Cost
1 <=20 1,720 179 1 1-10 164,107 7
2 21-30 34,893 122 2 11-14 84,859 101
3 31-50 118,182 102 3 15-18 28,952 16
4 51+ 127,054 70 4 19-20 3,931 272
5 Age Total 281,849 91 5 VG Total 281,849 91

Gender Exposure Burning

Cost
1 Male 197,339 92
2 Female 84,510 87
3 | Gerder | ap1g49 o1

Factor

Reduction
Corner
correctors _
and pre- Establish
baked Model
interactions Hierarchy

Use insights to guide GLM

Next gen ﬁ l
rating —

Main Poliey
Admin System

engine

Deploy directly
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Deploying GBMs

Pre / post ' “Comfort
mapping Diagnostics”

. / . . — - = _.If' L "-—-. =
Analytical N o T Next gen ﬁ l
environ- b 4 3 ' : rating -

ment ) - = - - engine Main Policy

Admin System

Deploy directly
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Predictive power

Interpretation

Table

SASEEMCIIE s Implementation
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Predictive power

Table Table

Execution speed |mplementation Implementation

Analytical

time and Interpretation
Interpretation effort

. Table
Table Execution speed n
Execution speed Implementation Implementation

Analytical
time and Interpretation ea Interpretation
effort

Support
Vector

Machine

Predictive power

Execution speed Implementation
Analytical
timeand Interpretation Interpretation

effort
Random
Forests

Table

Execution speed Implementation

Execution speed
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How is the North American market doing with machine learning?

Methods used

For which business applications do you use or plan to use these methodologies? (Q.13)

Modeling Techniques

Generalized linear models (GLMs) [ R 100 I 2%
I 57

One-way analyses

Decision trees

Model combining methods

Gradient Boosting Machines (GBMs)

Penalized regression methods

Random Forest (RF)

Other ensemble methods

Other Machine Learning methods

Grid search techniques

Loss Cost Modeling

48%
P 5%
P z0%
P 0%
P 26%
B 24%
N 26%

B 1%

Claims Analytics

I £0%

31%
B 23%
B 7%
1%
B 21%
B 7%

33%

B 8%

Marketing

I 37%
I 7%
30%

B 19%
B 5%
B 22%
B 22%
B 19%
B 19%
B 5%

B Primary
Secondary
B Tertiary

Base: U.S. respondents who use or plan to use the methodology for the application specified (Loss Cost Modeling n = 46, Claims Analytics n = 48, Marketing n = 27).
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Machine learning in personal lines pricing:fevolutionfor revolution?
Conclusions

= |t's not all about methods

= Domain expertise in formulating the problem can be more important

= New (wider) data generally adds more lift than new methods
= There are practical ways to assess model improvement as well as statistical
= Predictions:

= Many methods can augment the traditional GLM modeling process — in particular with growing datasets

= Others (e.g., GMBs) can improve prediction in own right but these require different approaches in interpretation and
technology/deployment

= Methods support predictions in new areas
- Very wide datasets iy

- Market rate analysis (0)
- Cross-selling an?j/ other customer behaviors /0 /////// ////
il /////////

- UW, claims, etc
iy
/IIIIIII

Data scientists

= Butit's not all about predictive power & statisticians L
= Fast investigation of new or “messy” data
= Quick assessment of emerging experience Domain experts

= Operational efficiency

= Industry (and Profession) has work to do in developing machine learning skills integrated with domain
expertise
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Contacts

Claudine Modlin

Director, Risk Consulting & Software
Willis Towers Watson

Claudine.Modlin@willistowerswatson.com +1 805499 2164

Duncan Anderson
Managing Director, Risk Consulting & Software
Willis Towers Watson

Duncan.Anderson@willistowerswatson.com +44 1737 274 080

Mark Richards

Director, Allstate Personal Lines
D3: Data, Discovery & Decision Science

Mark.Richards@allstate.com +1 630415 9547
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