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Motivation



Motivation

We want

I to use similar lines of business to inform our forecasting.

I a structured and 
exible way to incorporate that information.

I a simple model structure, easily interpreted by stakeholders.

I visible assumptions for easy audit.



Data



Data

We will be comparing our models using the schedule P data from
the NAIC database. We will focus on:

I Paid losses (though incurred are also available)

I End-of-year 1997 valuation date

I Accident years 1988-1997

I 10 development lags

I Commercial auto insurance

I 15 insurers



Data

Table: Run-o� triangle from Schedule P of NAIC

Acc. Year 0 1 2 3 4 5 6 7 8 9

1988 � � � � � � � � � �

1989 � � � � � � � � �  1998
1990 � � � � � � � �  1999
1991 � � � � � � �  2000
1992 � � � � � �  2001
1993 � � � � �  2002
1994 � � � �  2003
1995 � � �  2004
1996 � �  2005
1997 �  2006



Cumulative Paid Losses

Development Lag
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Figure: Multiple time series plot of cumulative paid loss



Model



Basic Model Structure

We start with the model
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For

I Accident year i

I Development year j

I Insurer n

As �2 !1, the data is given full credibility.
As �2 ! 0, the development factors approach the overall mean.



Prior Speci�cation

This model is very 
exible. You can incorporate basically any mean
structure you like through the prior distribution of �j . Here are
two options for the prior speci�cation of �j .

�j � N(a; b2) [Common prior]

�j �

�
N(a; b2) if j < k

N(1; 0:00012) if j � k
[Changepoint prior]

k � DU(1; 10)



Results



Normality Assumption

Our model depends on normality. Checking the normal qq plot and
the residuals, there appear to be no real concerns.

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

100 200 300 400 500

−
4

−
2

0
2

4

Fitted

R
es

id
ua

l

Figure: Normal qq plot and residual plot



Posterior Distribution of �j

The posterior distribution of �j depends on our choice of prior
structure.
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Development Factor Shrinkage

I As the value of � decreases, the posterior means of the
development factors (�j) shrink to the overall mean.

I Note that � is an absolute (not relative) value, so how small it
is will depend on the size of the �j .



Shrinkage of �1
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Shrinkage of �2
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Shrinkage of �3
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Shrinkage of �4
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Shrinkage of �5
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Shrinkage of �6
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Shrinkage of �7
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Shrinkage of �8
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Shrinkage of �9
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Preview of Current Work

I I am currently working with my former student (Nathan Lally)
on another way to think about the loss reserving triangle.

I When trying to incorporate the accident year, development
year, and calendar year e�ects, you can run into issues of
non-identi�ability.

I Alternatively, we can think of the triangle as two-dimensional
space.

I Then we can use all of the tools from spatial statistics to
solve loss reserving problems.



Spatial Reserving Interpretation
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