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ABSTRACT

Generalized linear models (GLMs) are gaining popularity as a statistical analy-
sis method for insurance data. For segmented portfolios, as in car insurance,
the question of credibility arises naturally; how many observations are needed
in a risk class before the GLM estimators can be considered credible? In this
paper we study the limited fluctuations credibility of the GLM estimators
as well as in the extended case of generalized linear mixed model (GLMMs).
We show how credibility depends on the sample size, the distribution of covari-
ates and the link function. This provides a mechanism to obtain confidence
intervals for the GLM and GLMM estimators.
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1. INTRODUCTION

Generalized linear models (GLMs) are becoming quickly the premier statistical
analysis method for insurance data. We consider the question of credibility: how
many observations are needed in a risk class of a segmented portfolio before
the GLM estimator can be considered credible? Schmitter (2004) provides an
excellent simple method to estimate the number of claims that will be needed
for a tariff calculation depending on the number of risk factors and the number
of levels for each factor. In this paper we study the limited fluctuations credi-
bility of GLM estimators as well as in the extended case of generalized linear
mixed models (GLMMs). Here credibility depends on the sample size, the
distribution of covariates and the choice of link function. This provides a
mechanism to obtain confidence intervals for the estimates in GLMs and
GLMMs.
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The paper is organized as follows: Section 2 briefly reviews the basic con-
cepts of GLMs and GLMMs. Section 3.1 gives limited fluctuations credibility
results for GLMs and GLMMs. Section 3.2 studies the choice of the link func-
tion and its effect on credibility. Section 3.3 illustrates with some numerical
examples the main results of the paper. Detailed calculations and applications
(in SAS) are provided.

2. GLMS AND GLMMS

This section provides a short summary of the main characteristics of GLMs
and GLMMs. McCullagh and Nelder (1989) provide a detailed introduction
to GLMs. The books by Aitkin et al. (1989) and Dobson (1990) are also excel-
lent references with many examples of applications of GLMs. Haberman and
Renshaw (1996) give a comprehensive review of the applications of GLMs to
actuarial problems.

Hardin and Hilbe (2007) provide a handbook for data analysis with GLMs
and GLM extensions. Lee et al. (2007) is a comprehensive reference for GLMs
with random effects. GLMMs are an extension of GLMs, complicated by ran-
dom effects. McCulloch and Searle (2001) and Demindenko (2004) are useful
references for details on GLMMs. Antonio and Beirlant (2007) give an applica-
tion of GLMMs in actuarial statistics.

2.1. Generalized linear models (GLMs)

GLMs are a natural generalization of classical linear models that allow the
mean of a population to depend on a linear predictor through a (possibly non-
linear) link function. This allows the response probability distribution to be any
member of the exponential family (EF) of distributions.

A GLM consists of the following components:

1. The response Y has a distribution in the EF, with density function taking
the form
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where q is called the natural parameter, f is a dispersion parameter, m = m(q) =
�(Y) and �(Y) = fV(m), for a given variance function V and known bivariate
function c. The EF is very flexible and can model continuous, binary, or
count data.

2. For a random sample Y1, …,Yn, the linear component is defined as

ji = Xi�b, i = 1, …, n, (2.2)
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for some vector of parameters b = ( b1,…, bp)� and covariate Xi = (xi1, …, xip)�
associated to the observation Yi .

3. A monotonic differentiable link function g describes how the expected
response mi = �(Yi) is related to the linear predictor ji

g(mi) = ji, i = 1, …, n. (2.3)

Example 2.1. GLMs commonly used in credibility theory

Table 1 below gives the different model components of the GLMs most com-
monly used in credibility theory for observed claim counts or claim severities.
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TABLE 1

GLM EXAMPLES

Y ~ Normal( m, s2) Gamma(A, b ) Poisson(l ) Bin.(m, q) / m
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Additional examples include inverse Gaussian and negative binomial observa-
tions, as well as multinomial proportions (for details see McCullagh and Nelder,
1989).

For an observed independent random sample y1, …, yn, consider the log-like-
lihood of b :
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and its derivative:
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Note that if Yi has a normal distribution, then g�(mi) = 1, and V(mi) = 1 for all i.
Setting d

( )
b
bdl = 0 yields i 1= i

n X! (yi – Xi�b ) = 0. In other EF cases, no closed form
solution is available to this system of p equations. Instead, the maximum like-
lihood estimator (MLE) is obtained numerically, using iterative algorithms
such as the Newton-Raphson or Fisher scoring methods.

The MLE b 5 of the GLM parameters has some nice asymptotic properties
when n, the number of observations, tends to infinity.

Lemma 2.1. For the MLE, b 5 that solves (2.5), we have:

1. b 5 is an asymptotically unbiased and consistent estimator of b.

2. � ( b 5) " S = – H –1, as n "3. H = – X�Wo X is the Hessian matrix, while
Wo = diag (wo1, …, won) is a diagonal weight matrix with i-th element woi =

m m( ) ( )fV g
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, for known weights wi and cova-

riate matrix X = (X1, …, Xn)�.

3. b 5 "d N (b, S), hence there is convergence in distribution.

For a proof see Fahrmeir and Kaufmann (1985).

Note that for a finite sample, the MLE b 5 is usually biased. Hence its mean
square error MSE(b 5) = �(b 5) + bias(b 5)2 plays an important role. We will see
in Section 3.2 that this finite-sample bias is affected by the choice of link func-
tion g (see Cordeiro and McCullagh, 1991).

2.2. Generalized linear mixed models (GLMMs)

The generalized linear mixed model is an extension of the generalized linear
model, complicated by random effects. It has gained significant popularity
in recent years for modeling binary/count, clustered and longitudinal data.
A GLMM consists of the following components:

1. For cluster data Yij, i = 1, …, n and j =1, …, ni, assumed conditionally inde-
pendent given the random effects U1, …, Un, consider the following EF dis-
tribution:
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where ui = (ui1, …, uik) are variates from normally distributed k-dimensional
random vectors Ui + N(0,D), where D is the variance-covariance matrix
and mij = �[Yij |Ui = ui ] = b�(qij). The variance of the observations, conditional
on the random effects, is given by � [Yij |Ui = ui ] = Ai

1/2Ri Ai
1/2. The diagonal

matrix Ai contains the variance functions of the model, which express the
variance of a response Yij as a function of its mean mij. The matrix Ri is the
variance-covariance matrix for the random effects.

2. The linear mixed effects model is defined as:

jij = X�ij b + T�ijui, i = 1, …, n, j = 1, …, ni, (2.7)

for the fixed effects parameter vector b = (b1, …, bp)� and random effects vec-
tor ui = (ui1, …, uik)�. Here Xij = (xij1, …, xijp)� and Tij = (tij1, …, tijk)� are both
covariates.

3. A link function g,

g(mij) = jij, i = 1, …, n, j = 1, …, ni, (2.8)

completes the model.

Most estimation methods for b and ui of GLMMs rest on some form of likeli-
hood principle, and numerical methods are needed in most cases to obtain the
estimates. Antonio and Beirlant (2007) give a brief review of some numerical
techniques, such as a restricted pseudo-likelihood, the Gauss-Hermite quadrature
and Bayesian methods. Demidenko (2004) gives four types of algorithms and
methods for the GLMM: (a) maximum likelihood with numerical quadrature,
(b) penalized quasi-likelihood (PQL), (c) specific methods in conjunction with a
Laplace approximation or a generalized estimating equation (GEE) approach,
and (d) Monte Carlo methods for integral or log-likelihood approximations.

For the GLMM defined in (2.6)-(2.8), the log-likelihood takes the form   
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is the i-th conditional log-likelihood (the term c(y) is omitted because it does
not affect the likelihood maximization).
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As explained in SAS/STAT (2006, pp. 119-121), there are two types of numer-
ical algorithms to solve for (2.9). The first type is based on Taylor series and hence
these algorithms are known as linearization methods. The series expansions give an
approximate model based on pseudo-data, with fewer non-linear components.

This computation of the linear approximation must be repeated several times
until covergence is reached, according to some criterion. Schabenberger and Gre-
goire (1996) give several algorithms based on Taylor series for clustered data.

These fitting techniques based on linearizations are usually doubly iterative.
The GLMM is first approximated by a linear mixed model based on current
values of the covariance parameter estimates. Then the resulting linear mixed
model is fitted, forming an iterative process. At convergence, the new parameter
estimates are used to update the linearization, generating a new linear mixed
model. The process stops when parameter estimates, for successive fits of the
linear mixed model, change only within a specified tolerance.

The second type of algorithm is based on integral approximations. The
log-likelihood of the GLMM is first approximated before the numerical opti-
mization. Various techniques exist to compute the approximation: Laplace and
quadrature methods, Monte Carlo integration, and Markov chain Monte Carlo
methods. The advantage of these integral approximation methods is that they
give an actual objective function for the optimization step. This allows for like-
lihood ratio tests among nested models, and the computation of likelihood-
based fit statistics. The estimation requires only a single iterative process.

The disadvantage of integral approximation methods is the difficulty to
study crossed random effects, multiple subject effects, and complex Ri-side
covariance structures. Also, the number of random effects must be small if the
integral approximation is to be feasible.

On the other hand, linearization methods yield a simpler linearized model,
for which it is sufficient to fit only the mean and variance of the linearized form.
This is a great advantage for models in which the joint distribution is difficult
or impossible to obtain. Models with correlated errors, a larger number or crossed
random effects, and multiple types of subjects perform well under linearization
methods. The main disadvantages of this approach are the absence of a true
objective function for the overall optimization. Also, it can lead to potentially
biased estimators of the covariance parameters, especially in the case of binary
data. The objective function, after each linearization update, is dependent on
the current pseudo-data. The optimization process can fail at both levels of the
double iteration scheme. For details see Wolfinger and O’Connell (1993).

2.2.1. Pseudo-likelihood estimation based on linearization

From (2.7)-(2.8) and SAS/STAT (2006) we have that � [Yi |Ui = ui ] = g–1(Xi b +Ti ui) =
g–1(ji) = mi forYi = (Yi1,…,Yini

)�, Xi = (X�i1, …, X�ini
), Ti = (T�i1, …, T�ini

), ji = (ji1, …, jini
)�

and mi = (mi1, …, mini
)�. The first Taylor series of mi about b 5 and u 5i yields

g–1(ji) =
.

g–1(j 5i) + D5i Xi (b – b 5) + D5iTi (ui – u 5i), (2.11)
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where

D5i = j
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b 5, u 5i

is a diagonal matrix of derivatives of the conditional mean evaluated at the
expansion locus. Rearranging terms yields the following expression

D5i–1( mi – g–1(j 5i)) + Xi b 5+Ti u 5i =
.

Xi b + Ti ui . (2.13)

The left-hand side is the expected value, conditional on ui, of

D5i–1(Yi – g–1(j 5i)) + Xi b 5+Ti u 5i / Pi (2.14)

and the variance-covariance matrix

� [Pi | ui ] = D5i–1Ai
1/2 Ri Ai

1/2 D5i–1. (2.15)

One can thus consider the model

Pi = Xi b + Ti ui + ei, (2.16)

which is a linear mixed model with a pseudo-response Pi , fixed effects b, ran-
dom effects ui, and � [ei] = � [Pi | ui ].

Now define

V(qi) = Ti DTi + D5i–1Ai
1/2 Ri Ai

1/2 D5i–1, (2.17)

as the marginal variance function in the linear mixed pseudo-model, where qi

is the q ≈ 1 parameter vector containing all unknowns in D and Ri. Based on
this linearized model, an objective function can be defined, assuming that the
distribution of Pi is known. The maximum log pseudo-likelihood, l (q,P), for
all qi and Pi is then given by 
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where ri = Pi – Xi (Sn
j =1Xj�V(qj)

–1Xj)–1 (Sn
j =1Xj�V(qj)

–1Pj), while f denotes the
sum of the frequencies used in the analysis. At convergence, the estimates are 

b 5 = (Sn
i =1Xi�V(q 5i)

–1Xi)–1 (Sn
i =1Xi�V(q 5i)

–1Pi), (2.19)

u 5i = D5 Ti�V(q 5i)
–1 (Pi – Xi b 5). (2.20)
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3. FULL CREDIBILITY THEORY FOR GLMS AND GLMMS

3.1. Full credibility criteria

Developed in the early part of the 20th century, limited fluctuations credibility
gives formulas to assign full or partial credibility to an individual or group of
policy-holders’ experience. Mowbray (1914) pioneered the use of experience rat-
ing for worker’s compensation premium formulas. He used a heuristic approach,
based on classical statistics, to develop full credibility formulae.

Also in the context of worker’s compensation, Whitney (1918) is an early
attempt at a more rigorous greatest accuracy credibility. Bailey (1950) is also
a significant contribution to this early credibility research literature.

A more statistical approach to credibility was developed in the second part
of the century. Some of the important contributions to partial credibility of that
period were given by Bühlmann (1967, 1969), Bühlmann and Straub (1970),
Hachemeister (1975) and Jewell (1975).

More recently, Nelder and Verrall (1997) showed how credibility theory
can be encompassed within the theory of GLMs. In that vein Schmitter (2004)
gave a simple method to estimate the number of claims needed for a GLM
tariff calculation. Here we focus on full credibility with a GLM model.

The insurer may find credible the estimator mi of the mean parameter mi it
estimates if the probability of small differences |mi – mi | is large. If this difference
is small “enough”, we say that full credibility is achieved. Statistically, this can
be defined as 

�{| mi – mi | # rmi} $ pi, i = 1, …, n, (3.1)

for a chosen estimation-error tolerance level 0 < r < 1 and confidence proba-
bility pi.

Proposition 3.1. For any generalized linear model, as defined in (2.1)-(2.3), let
g be a monotonic increasing link function. Then the probability 

pi = �{| mi – mi | # rmi} = �{(1 – r) mi # mi # (1 + r) mi}

= �{g[(1 – r) mi] – g(mi) # g( mi) – g(mi) # g[(1 + r) mi] – g(mi)}

= �{g[(1 – r) mi] – Xi�b # Xi�b 5 – Xi�b # g[(1 + r) mi] – Xi�b}. (3.2)

It is reasonable to restrict g to increasing link functions. If needed, similar
results would follow for decreasing link functions.

Proposition 3.1 gives some expressions equivalent to (3.1) and transfers the
confidence interval from the scale of the GLM estimators mi, to the scale of
the linear components, through the link function g.

For a general link function the lower and upper bounds to Xi�b 5 – Xi�b
in (3.2) depend on the parameters in b. But if the link function satisfies the

68 J. GARRIDO AND J. ZHOU



condition that g(cmi) = g(mi) + c� for any mi, where c and c� are constants with
respect to mi, then (3.2) admits a simpler form as follows.

Proposition 3.2. For any given error tolerance level r and any mi,

�{| mi – mi | # rmi} = �{c1 # Xi�b 5 – Xi�b # c2}, i = 1, …, n, (3.3)

if and only if a log-link function g(x) = c ln(x) + t is used in (3.2), where c and
t are scale and shift-parameters, respectively, and c1, c2 are given by:

c1 = c ln(1 – r) and c2 = c ln(1 + r). (3.4)

Proof: (%) If g(x) = cln(x) + t, by (3.2), it is clear that for any fixed i =1, …, n,

g[(1 – r) mi] – g(mi) = c ln[(1 – r) mi ] – c ln(mi) = c ln(1 – r),

and 

g[(1 + r) mi] – g(mi) = c ln[(1 + r) mi ] – c ln(mi) = c ln(1 + r).

(&) Again, for any fixed i =1, …, n, if

�{| mi – mi | # rmi} = �{c1 # Xi�b 5 – Xi�b # c2},

then from (3.2), for any mi,

c1 = g[(1 – r) mi ] – g(mi) and c2 = g[(1 + r) mi ] – g(mi). (3.5)

Assuming that g is differentiable, then for any mi

g�(mi) = lim limr
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Hence limr " 0 r
c
-

1 = limr " 0 r
c2 = c, say. Then g�(mi) = c

mi
, which indicates that

g(x) = c ln(x) + t. ¡

The above proposition shows that for the log-link function, the upper and lower
bounds of the full credibility rule do not depend on the estimated value mi. They
only depend on the chosen error tolerance level r. The following example gives
a concrete illustration.
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Example 3.1. Poisson distribution with a log-link function

Let Yi be independent Poisson distributed random variables representing the
number of claims for risk i = 1, …, n. Here � (Yi) = mi = exi1b1 + ··· + xip bip. With the
log-link function, g[�(Yi)] = g(mi) = xi1b1 + ··· + xipbip. By (3.2), | mi – mi | # rmi +

ln(1 – r) # Xi�b 5 – Xi�b # ln(1 + r). Since 0 < r < 1, then | ln(1 + r)| < | ln(1 – r)|
and hence 

�{| mi – mi | # rmi} = �{ln(1 – r) # Xi�b 5 – Xi�b # ln(1 + r)}

# �{| Xi�b 5 – Xi�b | # | ln(1 – r)|}. (3.8)

Now let s2 = �( b1 + ··· + bp) and Xi = (1,1, …,1), then (3.8) becomes 

�{| Xi�b 5 – Xi�b | # | ln(1 – r)|}

= �{| ( b1 + ··· + bp) – (b1 + ··· +bp) | # | ln(1 – r)|}

= �
p

.
ln

s s
rb 1p1 1g g

#
+ + - + + -b b b` _ ]j i g

* 4 (3.9)

Approximating by a normal distribution, (3.9) yields
( )ln
s

r1-
$ Zp*

, where Zp*

is the p
*
= 100[1 – p

2
1-
` j]-percentile of a standard normal distribution. Hence

the following asymptotic full credibility criterium is obtained:

p
,

ln
s Z

r
s

1
*

2
2

#
-

= 2

*

] g
< F

which says that the sample size n must be sufficiently large to ensure that the
variance of the sum of the estimators b1, …, bp be at most s2

*
. For instance, if

r = 0.1 and p = 90% then s2
*

= 0.00410. This result is consistent with the result
given by Schmitter (2004, p. 258).

The following results consider the asymptotic behaviour of mi = Xi�b 5.

Proposition 3.3. Let S = (sij)i, j = (X�WoX )–1 and s2
i = �(mi) = �(Xi�b 5). Then

for every component i = 1, …, n,

s 2
i " Xi�S Xi, (3.10)

as n " 3, where Xi , Wo and X are given in Lemma 2.1.

Proof: From Lemma 2.1-(2) we have that �( b 5) " S, as n " 3, and the itera-
tive b 5 converges to the true b, then
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s2
i = �(Xi�b 5) = �(xi1b1 + ··· + xip bp) 
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Furthermore, Lemma 2.1 states that b 5 converges to N(b, S) in distribution.
Then, the following corollary to Proposition 3.3 holds.

Corollary 3.1. (Xi�b 5 – Xi�b ) / si converges to N(0,1) in distribution.

We are now in a position to state the main results in this section on the asymp-
totic full credibility standard for mi .

Theorem 3.1. For the log-link function, an asymptotic normal approximation gives 

,
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g
n i = 1, …, n, (3.11)

where F is the cumulative distribution function (cdf) of the standard normal dis-
tribution.

Proof: From Propositions 3.1 and 3.2,

pi = �{ln(1 – r) # Xi�b 5 – Xi�b # ln(1 + r)}
ln(1 – r)

#
Xi�b 5 – Xi�b #

ln(1 + r)= �{ }.si si si

Hence, by the normal approximation, .p F F
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]
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l

g
l ¡

For any confidence coefficient pi, Theorem 3.1 gives a 100(1 – r)% confidence
interval for mi, the mean response from the GLM. The theorem also shows
that the confidence interval varies with the value of the covariates since si is a
function of Xi. The examples in Section 3.3 illustrate the above results.

Now for a general link function g, let 

Q1 = g[(1 – r) mi] – g(mi) and Q2 = g[(1 + r) mi] – g(mi) (3.12)

Theorem 3.2. For a monotonic increasing link function g, we have the following
asymptotic approximation:

,s
Q

s
Q

p F Fi
i i

2 1= -
.

d dn n i = 1, …, n, (3.13)
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where F is the cdf of the standard normal distribution, Q1 and Q2 are given in
(3.12) and si in Proposition 3.3.

Proof:

pi = �{| mi – mi | # rmi} = �{Q1 # Xi�b 5 – Xi�b # Q2}

=
i i

.� s
Q

s s
QX Xb b

i i i

1 2# #
-� �

* 4

Approximating by the normal distribution gives (3.13). ¡

Clearly, the smaller si the bigger pi (approximately), which differs for different i.
If g is the log-link function, then Proposition 3.2 gives closed forms for Q1

and Q2. For other link functions, as the true parameter value mi is unknown,
we can approximate Q1, Q2 and pi as follows. First set 

Q1 = g[(1 – r) mi ] – g(mi ) and Q2 = g[(1 + r) mi ] – g(mi ), (3.14)

which then implies that 

2 1 .p s sF Fi
i i

= -
. Q QJ
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K
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K
K

N

P

O
O

N

P

O
O (3.15)

Section 3.2 discusses the effect of the choice of link function on the above
approximation.

Finally, similar results hold for the confidence probability estimates in
GLMMs.

Proposition 3.4. For any generalized linear mixed model, as defined in (2.6)-
(2.8), let g be a monotonic increasing link function. Then

pij = �{| mij – mij | # rmij} = �{(1 – r) mij # mij # (1 + r) mij}
= �{g[(1 – r) mij] – g(mij) # g(mij) – g(mij) # g[(1 + r) mij ] – g(mij)}
= �{g[(1 – r) mij] – X�ij b – T�ij ui # X�ij b 5 + T�ij u 5i – X�ij b – T�ij ui

# g[(1 + r) mij] – X�ij b – T�ij ui}. (3.16)

Using the same idea as in Theorem 3.2 (see Liang and Zeger, 1986 for the
asymptotic normal distribution of the GLMM estimators), we obtain the fol-
lowing result for GLMMs.

Theorem 3.3. For any link function g, let s2
ij = �(X�ij b + T�ij ui) and Q1j, Q2j be

defined as 
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Q1j = g[(1 – r) mij ] – g(mij) and Q2j = g[(1 + r) mij ] – g(mij), (3.17)

then 

2

i i
i ,s

Q
s

Q
p F Fj

j j

j1
= -
. j

e eo o i = 1, …, n, j = 1, …, ni. (3.18)

3.2. The choice of link function

As shown in the previous section, the main idea here is to transfer the full
credibility condition (3.1) to an equivalent form that is easier to implement, as
in Theorems 3.1-3.2. Expression (3.13) gives the credibility of the GLM esti-
mator as a function of Q1, Q2 and si, which also depend on the link function g.
Thus, it is natural to investigate the effect of this choice of link function.

The following lemma shows that rescaling or shifting the link function of
a given GLM has no effect on the credibility of the resulting GLM estimators.

Lemma 3.1. Rescaling or shifting a given link function g, such as in h(x) =
cg(x) + t, does not affect the approximate confidence probabilities pi in (3.13).

Proof: For a link function g, (2.3) can be rewritten as g(mi) = b0
(g) + Xi�b

(g),
where b0

(g) is the intercept. Let the new link function be h(x) =cg(x) + t. Then

h(mi) = b0
(h) + Xi�b

(h) = cg(mi) + t and hence g(mi) = 0
c

b t-
( )h

+ Xi� c
b ( )h

. It follows

that b0
(g) = 0

c
b t-

( )h

and b (g) = c
b ( )h

.

Now let si
(g) = i( )� X b ( )g� , si

(h) = i( )� X b ( )h� . Clearly si
(g) = c

1 si
(h), or equiv-

alently, si
(h) = csi

(g), while 

Qi
(h) = h [(1 ± r) mi ] – h(mi) = c{g[(1 ± r) mi ] – g(mi)} = cQi

(g),

for i = 1, 2. Refer to (3.13) and substitute Qi
(h) and si

(h) above, to see that 

( ) ( ) ( ) ( )g g g g
i i i i

( )
( ) ( ) ( ) ( )

( )g
g g g g
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i i .
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¡

Example 3.4 gives a numerical illustration of Lemma 3.1. It shows how the esti-
mated probabilities pi, in (3.13), but where si is estimated with s 5i given by the
GLM, also remain essentially unchanged under any rescaling of the log-link
function.

The choice of link function also affects the bias in GLM estimators, b 5,
m 5i = g–1(Xi�b 5) and in our estimated Q1, Q2 in (3.14). This is explored in the next
result. We first reproduce a version of Jensen’s inequality that we need. In what
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follows a convex function is called convex upward while a concave function is
called convex downward.

Lemma 3.2. (Jensen’s Inequality). Let X be a random variable with finite mean
�(X ) and f be a convex upward (respectively downward) function on �. Then 

� [f(X )] $ (resp. #) f(� [X ]). (3.19)

Now we can explore how the link function affects the estimation bias in our
confidence intervals. We distinguish the cases when g is linear, convex upward
and decreasing, like the inverse function g(x) = 1/x, or else when it is convex
downward and increasing, like the log link function g(x) = ln(x).

Theorem 3.4. Q1 and Q2 in (3.14) are:

1. unbiased estimators if the link function g is linear,

2. asymptotically upward-biased if the link function g is convex upward and
decreasing,

3. asymptotically downward-biased if the link function g is convex downward and
increasing.

Proof: Recall that Q1 = g[(1 – r) m 5i ] – g(m 5i) and Q1 = g[(1 – r) mi ] – g(mi), where
g(mi) = Xi�b and g(m 5i) = Xi�b 5. Then 

bias (Q1) = �(Q1) – Q1

= �{g[(1 – r) m 5i ]} – � [Xi�b 5] – g[(1 – r) mi ] + Xi�b

= �{g[(1 – r) m 5i ]} – g[(1 – r) mi ] – Xi�bias(b ). (3.20)

Three cases need to be distinguished:

1. If g is linear then �{g[(1 – r) m 5i ]} – g[(1 – r) mi ] = 0 and b is unbiased, hence
so is Q1.

2. If g is a convex upward decreasing function, then by Jensen’s inequality in
(3.19)

�(m 5i) = � [g–1(Xi�b 5)] # g–1 [�(Xi�b 5)] = g–1(Xi�b ) = mi ,

that is �(m 5i) # mi. Now since 

�{g[(1 – r) m 5i ]} $ g{� [(1 – r) m 5i ]} = g{(1 – r) � [ m 5i ]} $ g[(1 – r) mi ] ,

and b 5 is asymptotically unbiased, then asymptotically �(Q1) – Q1 $ 0. Hence
Q1 is an asymptotically upward-biased estimator.
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3. If g is a concave increasing function, the proof is similar but with the inverse
inequalities. That is asymptotically �(Q1) – Q1 # 0 and Q1 is an asymptot-
ically downward-biased estimator.

The proof is similar for the results on Q2. ¡

In practice the choice of a link function for a GLM is not a straightforward
problem. Its solution heavily relies on experience and intuition. The following
theorem gives a criterium for the choice of the link function.

Theorem 3.5. For a GLM problem, pi given by (3.15) can be used as a criterium
to choose between two link functions g1 and g2. If pi

(g1) < pi
(g2), we say that the esti-

mator given under the link function g1 is less credible than the estimator given
under g2, that is g2 is better than g1.

3.3. Numerical examples

Example 3.2. Car Insurance Claims Data (GLM)
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TABLE 2

CAR INSURANCE DATA

Class Number of Risks Number of Claims Car Type Age Group

i = 1 500 42 small 1
2 1200 37 medium 1
3 100 1 large 1
4 400 101 small 2
5 500 73 medium 2
6 300 14 large 2

The SAS Technical Report P-243 (1993) gives the illustrative dataset in Table 6
of a car insurance portfolio (also reproduced in Schmitter, 2004). For earlier
examples of nonlinear analysis of car insurance data see Aitkin et al. (1989).

Now let the number of claims per risk yi be Poisson and choose a log-link
function. Furthermore, let the covariates Xi = (xi1, …, xi4)�, where 

xi1 = 1,

 1 if car type is largexi2 = 
 0 otherwise,

 1 if car type is mediumxi3 = 
 0 otherwise,

 1 if age group is 1xi4 = 
 0 otherwise.



In this notation X4 = (1,0,0,0)� defines the base premium �(Y4) = eb1 for a small
car type in age group 2. The matrix of variance-covariance S in Proposition 3.3
is computed with SAS for weights equal to the number of risks, i.e. w1 = 500,
w2 = 1200, w3 = 100, w4 = 400, w5 = 500 and w6 = 300 (see Lemma 2.1-2).
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.

.

.

.

.

.

.

.

.

.

.

.

.

S

0 008150
0 007772
0 006344
0 004623

0 007772
0 074180
0 006556
0 003113

0 006344
0 006556
0 016450
0 002592

0 004623
0 003113
0 002592
0 018470

=
-

-

-

- -

-

-

-

J

L

K
K
K
K
K

N

P

O
O
O
O
O

Let the tolerance level r = 0.1 and X3 = (1,1,0,1)� for the third class of drivers,
i.e. with a large car type in age group 1. Then the asymptotic value in (3.10) for

s3
2 = X3�SX3 = 0.082236 and from (3.11) we get p3 = F F

ln ln
s

r
s

r1 1
3 3

-
+ -]

b
]

b
g
l

g
l =

0.273533. Clearly, the current experience produces GLM estimators that are
not credible for this class with only one claim, as s3

2 =0.273533 > 0.00410 = s2
*
,

for r = 0.1 and p = 90%.
By contrast, letting X1 = (1,0,0,1)� gives s1

2 = 0.017374 and p1 = 0.553138,
which indicates a higher confidence in the GLM estimator for small cars than
for large cars, in age group 1, although not sufficient for full credibility s1

2 =
0.017374 > 0.00410 = s2

*
. Table 3 reports the asymptotic variances si

2 = �(Xij�b ) "
Xi�SXi and the credibility probabilities pi for all 6 classes.
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TABLE 3

ASYMPTOTIC VARIANCES Xi�SXi AND CONFIDENCE PROBABILITIES pi

Class i = 1 2 3 4 5 6

Xi� (1,0,0,1) (1,0,1,1) (1,1,0,1) (1,0,0,0) (1,0,1,0) (1,1,0,0)

Xi�SXi 0.017374 0.015952 0.082236 0.008150 0.011912 0.066786

pi 0.553138 0.572679 0.273533 0.732868 0.641557 0.302114

Example 3.3. Effect of Sample Size (GLM)

Furthermore, if we modify Example 3.2 so that the claim experience increases
proportionally, we see that so does the confidence probability pi. For instance,
in the third class we need to multiply exposures by as much as 23 times
(i.e. both the risk and claim counts) to get s3

2 = 0.003575 and p3 = 0.905492
(i.e. full credibility at the 90% level). As expected, the GLM tends to full
credibility as the portfolio size increases.



Example 3.4. Effect of the Covariates Distribution (GLM)

This example shows that credibility also depends on the distribution of the
covariates. For instance, modify the above Car Insurance Data to keep the
total number of claims unchanged at 268 in Table 6, but rearrange the claim
counts in each group as in Table 4.
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TABLE 4

MODIFIED CAR INSURANCE DATA

Class Number of Risks Number of Claims Car Type Age Group

i = 1 500 45 small 1
2 1200 108 medium 1
3 100 9 large 1
4 400 36 small 2
5 500 44 medium 2
6 300 26 large 2

Then for X3 = (1,1,0,1)� we get an asymptotic s3
2 = 0.038200 and p3 = 0.392182,

which differs from the value of 0.273533 obtained in Example 3.2. Clearly the
credibility of GLM estimates depends on the distribution of the covariates.

Example 3.5. Effect of the Link Function (GLM)

Let the link function g(x) = c ln(x) + t. Lemma 3.1 shows that c and t have no
effect on the calculation of Q1, Q2 and si. The same is true when these are esti-
mated by a software implementation of the GLM, for instance the GENMOD
procedure in SAS.

Choosing different rescaling parameters c, Table 5 shows that the estimated
confidence values pi in (3.13), for classes i = 1 and 3 remain essentially the same.

TABLE 5

RESCALED CAR INSURANCE DATA

c s1 p1 s3 p3

0.1 0.019139 0.552537 0.028674 0.273559
0.5 0.065901 0.553164 0.143400 0.273504
1 0.013181 0.553139 0.286768 0.273533
2 0.263610 0.553157 0.573620 0.273495
5 0.659007 0.553165 1.433855 0.273531

Hence rescaling or shifting the link function practically does not affect the pi

values.



Example 3.6. GLMM with Territory as Random Effect

This example illustrates the credibility results for GLMMs. We add one more
variable, called territory, to Example 3.2. It takes two values, “rural” and
“urban”, which will illustrate the random effect of a GLMM. The fixed-effects
parameters estimates, b 5, those for the random-effects, u 5, as well as their variance-
covariance matrix were obtained with the GLIMMIX procedure in SAS (see
SAS/STAT (2006)).
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TABLE 6

CAR INSURANCE DATA WITH TERRITORY RANDOM EFFECTS

Class Number of Risks Number of Claims Car Type Age Group Territory

i = 1 500 42 small 1 rural 
2 1200 37 medium 1 urban
3 100 1 large 1 rural
4 400 101 small 2 urban
5 500 73 medium 2 rural
6 300 14 large 2 urban

As in Example 3.2, let yi be Poisson and g be a log-link function. Furthermore,
let the covariates Xi = (xi1, …, xi5)� and Tj = (t1j, t2j)�, be coded as:

xi1 = 1,

 1 if car type is largexi2 = 
 0 otherwise,

 1 if car type is mediumxi3 = 
 0 otherwise,

 1 if age group is 1xi4 = 
 0 otherwise.

 1 if territory is ruralt1j = 
 0 otherwise.

 1 if territory is urbant2j = 
 0 otherwise.

The variance-covariance matrices S of the fixed effects and D in �(Xi�b +
Ti�ui) = Xi�S Xi + Ti�DTi of the random effects are given by:
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0 016500
0 007440
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0 074590
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0 017680
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.
.

D
0 101262

0
0

0 101262
= d n (3.21)

Let the tolerance level r = 0.1 and X3 = (1,1,0,1)�, T1 = (1,0)� for the third class
of drivers with a large car type in age group 1 and in territory rural. Then the
estimated variance, as given in Theorem 3.3 is s2

13 = X3� S X3 + T1�DT1 = 0.100608.

This gives p3 = s sF F
ln lnr r1 1

13 13
-

+ -]
b

]
b

g
l

g
l = 0.248217. Clearly, the current expe-

rience produces GLMM estimators in this class that have a low confidence.
By contrast, letting X1 = (1,0,0,1)� and T1 = (1,0)� gives s2

11 = 0.034552 and
p11 = 0.410517, which indicates a GLMM estimator with a higher confidence
for small cars in age group 1 than for large cars in age group 1 and a rural ter-
ritory.

CONCLUSION

This paper studies the credibility of the estimators obtained from GLM and
GLMM risk models. A closed form of the full credibility criteria is given for
the log-link function, usually paired to Poisson observations (i.e. claim counts).
For general link functions, we propose a credibility estimation based on an
asymptotic normal approximation.

The proposed method should become useful to actuaries as it provides full
credibility criteria for GLM estimators, at a time when these are becoming
popular in the statistical analysis of insurance and risk data.
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