Estimating Insurance Attrition Using Survival Analysis

Luyang Fu, Ph.D., FCAS

CAS Spring Meeting, May 2015,

The author's affiliation with The Cincinnati Insurance Company is provided for identification purposes only and is not intended to convey or imply The Cincinnati Insurance Company's concurrence with or support for the positions, opinions or viewpoints expressed.

Agenda

- Introduction
- Survival Analysis
- Cox Proportional Hazard Model
- A Case Study
- Q&A

Attrition/retention is important to insurance companies

Growth (Top Line)

- "We were not successful in raising customer renewal rates, so that the new business success did not result in overall growth this quarter"
 All State 2010Q4 Earnings call
- Higher retention, less pressure of attracting new business

To grow a book with 10,000 policies by 10%,

- if retention is 90%, need to attract 2000 new accounts: 1000 to make up attrition, 1000 for the growth
- if retention is 70%, need to write 4000 new accounts: 3000 to make up attrition, 1000 for the growth

Attrition/retention is important to insurance companies

Profitability (Bottom Line)

 "Given our strong retentions as well as the new business and account growth we've achieved over the last few years, we have significant positive leverage to an improving environment."

Travelers 2010Q4 Earning call

Ageing Phenomenon

- D'Arcy and Doherty (1989; 1990): loss ratio improves with policy age
- Wu and Lin (2009): renewal book on average has a loss ratio 13% better than new business by examining 8 lines of business, 25 books, \$29 billion premium

Price Optimization

- Retention, conversion, price elasticity
- Life-time value

Two types of Attritions

- Mid-term cancellation
- End-term nonrenewal

Probability of Attrition: Cancellation vs. Nonrenewal

Two types of attritions behave differently

- Example 1: price elasticity
 - End-term nonrenewal is more sensitive to price change
 - Mid-term cancellation may be from non-pricing reasons

Two types of attritions behave differently

- Example 2: policy size in commercial lines
 - Small policies may have a higher mid-term cancellation ratio than large policies
 - Large policies may have a higher end-term nonrenewal ratio

Attrition Ratios by Month: Large vs. Small Commercial Policies

Traditional Retention Analysis

- Renewal ratio at expiration month
 - If 1,000 policies expire at May 2013, 920 of them are still with the company at 05/31/2013. The renewal ratio is 92%.
 - The evaluation lag may vary.
 - It ignores the attrition from mid-tern cancellation
 - It does not give an annual view of retention or attrition

Traditional Retention Analysis

- Annual Retention: Snapshot comparison
 - If there were 10,000 inforced policies at 12/31/2011, 8,500 of them were still effective at 12/31/2012, the annual retention ratio is 85%.
 - Does not analyze the sources of attritions. 15% is the sum of mid-term cancellation and end-term nonrenewal

Traditional Retention Analysis

- Logistics models
 - Data: snap-shot data
 - Variable of interest: yes or no
 - Do not model cancellation and nonrenewal separately (can be extended to model two ways of attritions independently).
 - Static view

Why survival analysis?

- Estimate mid-term cancellation and end-term nonrenewal sequentially and simultaneously
 - Survival Analysis:
 - Reflect two ways of attritions through the seasonality within survival curve
 - Recognize the aging sequence of the same policy (panel data approach)
 - Logistics Regression:
 - Snap-shot data cannot separate mid-term and end-term attritions
 - Treat each record within the same policy panel independently

Why survival analysis?

- Better estimation of life time value: not just whether a policy will leave, but when it will leave
 - Survival Analysis:
 - Target variable of interest: t (time to attrition)
 - If 10,000 policies are inforce at 12/31/2009, 8,500 of them were still effective after a year. Among 1,500 attritions, how many of them left by cancelation and non-renewal, and when they left?
 - Logistics Regression:
 - Target variable of interest: yes or no
 - Ignore the time of attrition
 - Do not predict the attrition for non-integer multiples of the evaluation horizon

Why survival analysis?

- Better utilization of time-varying macroeconomic variables
 - Survival Analysis:
 - Dynamic view of treasury yield, GDP change, and stock market return, etc.
 - Reflect interest rate, inflation, consumer confidence at the time of attrition
 - Logistics Regression:
 - Static view of those variables
 - If "yes" or "no" is constructed by comparing 2011 with 2012 yearend book, one summarized "unemployment rate" is used for all the records
 - Flinn and Heckman (1982): reliance on ad hoc procedures to cope with time-trended variables in logistic regression can produce very pathological estimates

The disadvantages of survival analysis

- Model implementation is not as straightforward as binary model
 - Logistic
 - Probability of attrition is the direct output of model
 - Survival analysis
 - Develop baseline survival function
 - Derive hazard function for individual policies
 - Calculate the probability of attrition

The disadvantages of survival analysis

- Time-varying macroeconomic variables are more difficult to predict than retention
 - How to capitalize the relationship between retention and time-varying macroeconomic variables
 - The models on interest rates and stock indexes are much more complex then retention models
 - Macroeconomic variables are more volatile than retention, and may introduce additional volatility into retention projection.

Literatures on Marketing and Banking

- Helsen K. and D. C. Schmittlein, "Analyzing Duration Times in Marketing: Evidence for the Effectiveness of Hazard Rate Models", *Marketing Science*, 1993, Vol. 12, No. 4, 395-414.
- Stepanova M. and L. C. Thomas, "Survival Analysis for Personal Loan Data", *Operations Research*, 2002, Vol. 50, 277-289.
- Van den Poel D., and B. Lariviere, "Customer Attrition Analysis for Financial Services using Proportional Hazard Models", European Journal of Operational Research, 2004, vol. 157, No 1, 196-217
- Graves S, D. Kletter, W. B. Hetzel, R. N. Bolton, "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction", Marketing Science, 1998, Vol. 17, No. 1, pp. 45-65.
- Andreeva G., "European Generic Scoring Models Using Survival Analysis", *Journal of the Operational Research Society*, 2006, Vol. 57, No. 10, pp. 1180-1187.
- Bellotti T. and J. Crook, "Credit Scoring With Macroeconomic Variables Using Survival Analysis", Journal of the Operational Research Society, 2009, Vol. 60, pp. 1699–1707.
- Tang L, L. C. Thomas, S. Thomas, J. F. Bozzetto, "It's the Economy Stupid: Modeling Financial Product Purchases", *International Journal of Bank Marketing*, 2007, Vol.25, No 1, 22-38.

- Another name for time to event analysis
- Statistical methods for analyzing survival data.
- Primarily developed in the medical and biological sciences (death or failure time analysis)
- Widely used in the social and economic sciences, as well as in Insurance (longevity, time to claim analysis).

Survival Time

 t measures the time from a particular starting time (e.g., time initiated the treatment) to a particular endpoint of interest (e.g., patient died).

• Examples:

- Insurance Policy: Started at Jan2008, terminated at Aug2012.
- Products: Bought at Dec2006, failed at Feb2009.
- Marketing: coupon mailed at Jan2013, redeemed at March 2013.

Censoring

- Occurs when the value of a measurement or observation is only partially known.
- Left Censoring:

Example: Subject's lifetime is known to be less than a certain duration.

• Right Censoring:

Example: Subjects still active when they are lost to follow-up or when the study ends.

Data

- Calendar time of whole study (Starting day, Ending day of the whole study period)
- Study Duration of each individual.
- Define the censored observations.
- Time measure units (Month, Year ...)
- Define the dependent variable and independent.

Origination Time ►Entry Time to study ■Attrition OCensored

Advantages

- The dependent variable of interest (survival/failure time) is most likely not normally distributed.
- Censoring(especially right censoring) of the Data.
- Baseline hazard function is unknown.
- Whether and when the customer will leave.
- Dynamics covariates and duration

Hazard equations

 $h(t \mid x_t)$: hazard rate at time t for an individual have covariate value, X_t

$$h(t \mid x_t) = h_0(t)e^{\beta'x_t}$$

Here $x_t = (x_{1t}, x_{2t}, \ldots, x_{kt})$ $\beta = (\beta_1, \beta_2, \ldots, \beta_k)$ k is the total number of the covariates, x_j β_j is the constant Proportional effect of

The term $h_0(t)$ is called the *baseline hazard*; it is the hazard for the respective individual when there is no covariate impacts.

Hazard Equations

We can linearize this model by dividing both sides of the equation by $h_0(t)$ and then taking the natural logarithm of both sides:

$$\ln\{h(t \mid x_{t})/h_{0}(t)\} = \beta' x_{t}$$

Taking partial derivative we have

$$\partial \ln h(t \mid x_t, \beta) / \partial x_{it} = \beta_i$$

Literatures on Survival Analysis Theory

- Cox, D. R., "Regression Models and Life Tables (with discussion),"
 Journal of the Royal Statistical Society Series B, 1972, Vol. 34,
 187-220.
- Efron, B., "Logistic Regression, Survival Analysis, and the Kaplan-Meier Curve", Journal of American Statistical Association, 1988, Vol. 83, 414-425.
- Flinn, C. and J. Heckman, "New Methods for Analyzing Structural Models of Labor Force Dynamics", Journal of Econometrics, 1982, vol. 18(1), 115-168.
- Kaplan, E.L. & Meier, P. "Nonparametric Estimation from Incomplete Observations," *Journal of the American Statistical Association*, 1958, Vol 53, 457-481.

Data

- Simulated commercial line data.
- Dependent variable:
 - Duration = the time until the policy leaves
- If a policy is still effective at the end of study, it is right censored (i.e. Censor = 1)
- External data (including macroeconomic data) are joined into policy data.

Data

- Define rate changes, removing the impacts from
 - Exposure changes (add a building; cut a class)
 - Coverage changes (reduce limits; increase deductible)
 - Risk characteristics changes (have a violation/claim; add a youthful driver)
- Groupings/binnings can be arbitrary
 - Contractors vs. noncontractors
 - Size groups
 - Variable interactions:
 - Small, medium, large contractors
 - General, nongeneral with sub, artisan contractors

Annual Attrition Summary

Year	Total	Renewed	Non Renewed	Midterm Cancellation	Non Renewal %	Midterm Cancellation %	Retention %
1	197,954	156,477	24,570	16,907	12.41%	8.54%	79.05%
5	211,061	162,875	27,398	20,788	12.98%	9.85%	77.17%

^{*} The data is for illustration purpose.

Annual Attrition Summary

Annual attrition: end-term vs. mid-term

Annual Attritions by Policy Age

Annual Attrition: NB vs old policies

Annual Attritions by Policy Category

Annual Attrition: monoline vs package

Monthly View: March Year1

	Active	Attrition	Percent
End-term	16,939	2,086	12.32%
Others	182,160	1,609	0.88%
Total	199,099	3,695	1.86%

Monthyl View: End-term Nonrenewal Rate

Monthly View: Mid-term Cancellation Rate

Monthly Attritions by Policy Size

Monthly end-term attrition: by policy size

Monthly mid-term attrition: by policy size

Monthly Attritions: Contractors vs. noncontractors

End-term attrition: contractors vs other

Mid-term attrition: contractors vs other

Parameter Estimates from Proportional Hazard Models

Analysis of Maximum Likelihood Estimates				
Variable Name	Parameter	Chi-Square	Pr > ChiSq	
variable Name	Estimate	Oni-Square		
Package Indicator	-0.12365	51.77775	<.0001	
Rating Change	0.4847	9361.2017	<.0001	
Policy Age	-0.00778	1838.8259	<.0001	
GDP	-0.02942	58.5243	<.0001	

There are about 20 variables plus several interaction terms in the models. Only selected variables are reported.

Parameter Estimates from Logistic Regression

Logit Analysis of Maximum Likelihood Estimates					
Variable Name	Parameter	Chi-Square	Pr > ChiSq		
	Estimate	On Oquare			
Package Indicator	-0.1542	63.52335	<.0001		
Rating Change	0.4167	899.4738	<.0001		
Policy Age	-0.00691	3590.2861	<.0001		
GDP	-0.0245	16.4331	<.0001		

Survival Curve for Policy Age

Survival Curve for Policy Category

Survival Curve for GDP Change (Percent)

Survival Curve for Market Condition

Validation of the Models (Table)

Out-of-sample Performance of Survival Analysis on the 1 year attrition

Out-of-sample Perf	ormance of	Logistic I	Regression
on the 1 year attriti	ion		

Model Decile	Available Obs	Attrition Obs	Attrition Rate	Cumulative Quantity
1	9,625	3,697	38.41%	9,625
2	9,627	2,714	28.19%	19,252
3	9,624	2,356	24.48%	28,876
4	9,628	2,116	21.98%	38,504
5	9,628	1,935	20.10%	48,132
6	9,626	1,722	17.89%	57,758
7	9,627	1,677	17.42%	67,385
8	9,625	1,498	15.56%	77,010
9	9,628	1,245	12.93%	86,638
10	9,626	1,054	10.95%	96,264
Total	96,264	20,014	20.79%	96,264

Model Decile	Available Obs	Attrition Obs	Attrition Rate	Cumulative Quantity
1	9,622	3,567	37.07%	9,622
2	9,630	2,790	28.97%	19,252
3	9,627	2,303	23.92%	28,879
4	9,626	2,148	22.31%	38,505
5	9,628	1,929	20.04%	48,133
6	9,626	1,758	18.26%	57,759
7	9,626	1,641	17.05%	67,385
8	9,626	1,450	15.06%	77,011
9	9,627	1,310	13.61%	86,638
10	9,626	1,118	11.61%	96,264
Total	96,264	20,014	20.79%	96,264

Validation of the Models (Lift)

Decile

9

10

5.00%

3

Out-of- sample lift: relatively to average

Validation of the Models (Gini Chart)

Out -of-sample Performance of Survival Analysis on the 1 year attrition

Out –of-sample Performance of Logistic Regression on the 1 year attrition

Conclusions

- Survival analysis addresses not only whether a policy will leave, but also when it will leave.
- Provide a dynamic insight by utilizing panel data and improve the static view derived from snapshot data.
- Analyze mid-term cancellation and end-term nonrenewal sequentially and simultaneously.
- Able to measure the impacts of time-variant macroeconomic variables on attrition.
- Empirical study does not show significant lift improvement over logistics regression

