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• Today’s goal is to illustrate application of two time series techniques

– ARIMA: Auto Regressive Integrated Moving Average

– Regression with correction for serial correlation in residuals

– High level summary of techniques

• Describe sample data set

• ARIMA model example

• Regression with serial correlation correction example

• Conclusion

Agenda
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Sample Data Set
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• Hypothetical data set built for this presentation with plausible assumptions

• Data available

– No physical exposure units

– Earned Premium

– Earned Premium at Current Rate Level

– Losses developed to ultimate (assume stable at six months)

• Monthly seasonality built into data set

• Long term loss cost trend of 3% annually

• Market trends for pricing affect observed loss ratios

• On average, the rate changes will match long term trend

• Annual rate changes earned on annual policies

Sample Data Set Construction
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Sample Data Set
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ARIMA Example
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• Model for mean reverting time series

– Common technique for analyzing financial time series

– Sometimes, differencing the observations is necessary to obtain stationary time
series

• ARIMA (Auto Regressive Integrated Moving Average) Sample Equation

– ௧ܻ - .6 ௧ܻି ଵ= +��௧ߝ .4 ௧ିߝ ଵ

– Auto Regressive portion: .6 ௧ܻି ଵ

– Moving Average portion: .4 ௧ିߝ ଵ

– Assumes mean of zero after differencing

– Reverse differencing to forecast

• Use autocorrelation (ACF) and partial auto correlation (PACF) results to
diagnose likely ARIMA form

• Iterative routines to solve for factors (Conditional Sum of Squares)

ARIMA Model Background
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• Conditional Least Squares: Iterative calculation solving for ARIMA least
squares parameter estimates assuming unknown prior values equal series
mean.

• OLS: Ordinary Least Squares for normal distribution based regression

• Auto Correlation Function: Covariance between observations over time

• Partial Auto Correlation Function: Remaining correlation after removing effect
of earlier lag correlation

• Inverse Auto Correlation Function: Calculate auto correlation after inverting
the standard ARIMA formula

• Stationary Time Series: Condition for ARIMA model to converge. Time series
(after transformation) is mean reverting with no long-term trend

Vocabulary
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ARIMA Identification Exhibits Before First Differencing
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ARIMA Identification Exhibits After Applying First Difference

ACF: autocorrelation, PACF: partial autocorrelation, IACF: inverse auto correlation
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ARIMA Initial Model

To Lag

Chi-

Square DF

Pr >

ChiSq

6 42.86 6 <.0001 -0.53 -0.075 0.166 -0.031 0.046 -0.127

12 98.96 12 <.0001 0.062 -0.072 0.172 -0.099 -0.278 0.525

18 117.05 18 <.0001 -0.291 -0.038 0.164 -0.102 0.04 -0.046

24 150.94 24 <.0001 0.001 -0.034 0.133 -0.121 -0.17 0.393

Autocorrelation Check for White Noise

Autocorrelations

Standard Approx

Error Pr > |t|

MA1,1 0.86476 0.04649 18.6 <.0001 1

Conditional Least Squares Estimation

Paramet

er Estimate t Value Lag

Autocorrelation
pattern before
Moving Average

Parameter Estimate
for Moving Average

To Lag

Chi-

Square DF

Pr >

ChiSq

6 10.59 5 0.0602 -0.106 -0.035 0.207 0.082 0.023 -0.135

12 45.15 11 <.0001 -0.012 -0.028 0.11 -0.129 -0.153 0.44

18 54.64 17 <.0001 -0.13 -0.057 0.105 -0.096 -0.074 -0.14

24 82.8 23 <.0001 -0.106 -0.076 0.023 -0.168 -0.095 0.355

Autocorrelation Check of Residuals

Autocorrelations

Autocorrelation
pattern after
Moving Average
Model
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ARIMA Diagnostics After Application of Moving Average

Combination of ACF & PACF indicate autoregressive at lag 12
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ARIMA Model Results with Combined MA(1) AND AR(12)

Standard Approx

Error Pr > |t|

MA1,1 0.76574 0.05873 13.04 <.0001 1

AR1,1 0.54702 0.08411 6.5 <.0001 12

Conditional Least Squares Estimation

Paramet

er Estimate t Value Lag

Factor 1: 1 - 0.54702 B**(12)

Factor 1: 1 - 0.76574 B**(1)

Autoregressive

Factors

Moving Average

Factors

To Lag

Chi-

Square DF

Pr >

ChiSq

6 7.47 4 0.113 -0.092 -0.024 0.114 0.149 0.083 -0.077

12 12.69 10 0.2416 -0.012 -0.043 0.045 -0.063 -0.102 -0.138

18 23.62 16 0.0982 -0.062 0.037 0.051 -0.235 -0.108 0.011

24 32.06 22 0.0764 -0.094 -0.093 0.001 -0.132 0.001 0.141

Autocorrelation Check of Residuals

Autocorrelations

Both parameters significant
Parameters displayed in ARIMA
equation format

Model passes white noise test

Copyright © 2015 by The Hartford. All rights reserved. No part of this document may be reproduced, published or posted without the permission of The Hartford. 14

ARIMA Model Actual & Projected
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Regression with Serial Correlation Correction Example
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• Method is Generalized Least Squares

– Weights observations using correlation effect on variance

– Calculates revised estimate of regression accuracy using adjusted
variance

• Analysis Sequence

– Run OLS on Data Set

– Estimate significant correlation by lag time

– Re-run with Generalized Least Squares

Regression with Serial Correlation in Error Correction
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Regression Before Serial Error Correlation Correction

Standard Approx

Error Pr > |t|

Intercept 1 -0.9368 0.033 -28.36 <.0001

Time 1 0.002393 0.000431 5.55 <.0001 Time

Parameter Estimates

Variable DF Estimate t Value

Variable

Label

Time is monthly on
log scale for loss
ratio. Annual trend of
about 2.9%.

Durbin-Watson indicates correlation
in residuals.

SSE 4.626879 DFE 130

MSE 0.03559 Root MSE 0.18866

SBC -57.956 AIC -63.7216

MAE 0.153815 AICC -63.6286

MAPE 23.19183 HQC -61.3787

Durbin-Watson 2.05 Regress R-Square 0.1918

Total R-Square 0.1918

Ordinary Least Squares Estimates
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Regression Serial Correlation in Residuals Analysis

Lag Estimate t Value Pr > |t|

5 -0.00474 -0.05 0.9587

8 0.023218 0.28 0.7832

1 0.04065 0.47 0.637

9 -0.0554 -0.63 0.5273

10 0.084678 1.01 0.315

2 -0.11027 -1.39 0.1676

4 -0.12345 -1.51 0.1335

7 0.106178 1.33 0.1846

6 0.142359 1.73 0.0864

Backward Elimination of

Autoregressive

Terms

Standard

Error

3 -0.21972 0.079946 -2.75

11 0.166534 0.079923 2.08

12 -0.32073 0.079935 -4.01

Estimates of Autoregressive Parameters

Lag

Coefficie

nt t Value

Data is monthly leading to
question of lag over 12
months.

These results will be used in
adjusting prediction.
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Regression with Serial Errors in Residual Correction Results

SSE 3.632187 DFE 127

MSE 0.0286 Root MSE 0.16912

SBC -73.2619 AIC -87.6759

MAE 0.131619 AICC -87.1997

MAPE 19.07665 HQC -81.8187

Durbin-Watson 1.941 Regress R-Square 0.1313

Total R-Square 0.3655

Yule-Walker Estimates

Standard Approx

Error Pr > |t|

Intercept 1 -0.9422 0.0438 -21.52 <.0001

Time 1 0.002463 0.000562 4.38 <.0001 Time

Parameter Estimates

Variable DF Estimate t Value

Variable

Label

Note that estimation changed from OLS
to Yule-Walker. Tot R-squared
improves with recognizing correlation in
residuals.
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Regression with Serial Errors in Residual Correction Diagnostics
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Conclusion
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Results from Modeling Loss Ratios at Current Rate Level
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• Trend Data is Time Series Data

– Statistics collected on regularly spaced intervals

– Limited explanatory variables

– Seasonality and correlation are common in trend data

• Time series models use patterns in correlation

• Models shown are a small sample of time series models

• Advances in software make time series modeling accessible

– Numerous packages in R

– GUI front end in SAS for basic ARIMA

• Time series methods offer improvement in ratemaking trend analysis

Conclusion
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