CAS Spring Meeting Vancouver, 2012

CLFM Estimates

Daniel Murphy, FCAS, MAAA

Trinostics LLC

with Emmanuel Bardis and Ali Majidi

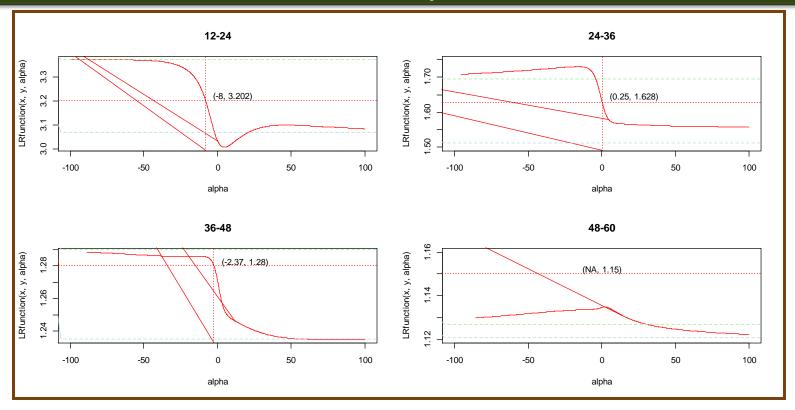
Users are demanding something be done! ©

Apr 8, 2009
 Hi,
 I am using the latest version of Chainladder in R 2.8.1 and have found it to be an excellent package indeed. There are occasions when the development factor may need to be selected as different from the output of the linear model ... Is there a place in the MackChainLadder code where different development factors may be used?
 Thanks and Regards

Feb 27, 2013
 I agree with this proposal. We often have to choose specific coefficients.
 Could it be an option in the input of the functions bootchainladder and MackChainLadder?
 Thank you in advance,

WC Indemnity Paid Dollars

Paid Indemnity Loss Development (\$millions)											
Age (months)											
Acc Year	12	24	36	48	60	72	84	96	108	120	 372
1979											 410
1980											 490
2001			2,454	3,244	3,715	4,001	4,205	4,348	4,452	4,528	
2002		1,438	2,563	3,306	3,726	4,006	4,190	4,320	4,406	4,486	
2003	434	1,464	2,482	3,100	3,497	3,749	3,910	4,028	4,132	4,227	
2004	392	1,142	1,738	2,148	2,397	2,573	2,699	2,809	2,908		
2005	322	880	1,331	1,644	1,843	1,988	2,108	2,207			
2006	311	890	1,370	1,683	1,911	2,083	2,224				
2007	320	929	1,438	1,791	2,042	2,230					
2008	322	942	1,486	1,888	2,171						
2009	287	881	1,424	1,822							
2010	292	921	1,500								
2011	299	956									
2012	325										


- "Equivalent" industry data evaluated 12/31/2012
- The green shaded cell in each column is the observation with the minimum beginning value in that development period
- The blue shaded cell is the maximum beginning value

Link Ratios

Acc Year	24/12	36/24	48/36	60/48	72/60	84/72	96/84	108/96	120/108
2001			1.322	1.145	1.077	1.051	1.034	1.024	1.017
2002		1.782	1.290	1.127	1.075	1.046	1.031	1.020	1.018
2003	3.370	1.696	1.249	1.128	1.072	1.043	1.030	1.026	1.023
2004	2.914	1.522	1.236	1.116	1.073	1.049	1.041	1.035	
2005	2.734	1.512	1.235	1.121	1.079	1.060	1.047		
2006	2.866	1.539	1.229	1.135	1.090	1.068			
2007	2.905	1.547	1.246	1.140	1.092				
2008	2.927	1.577	1.271	1.150					
2009	3.069	1.616	1.280						
2010	3.154	1.628							
2011	3.202								
Selected	3.202	1.628	1.280	1.150	1.092	1.068	1.047	1.035	1.019

- The industry committee's decision is to select the most recent factor
- The green cell in each column is the link ratio corresponding to the observation with the minimum beginning value
- The blue cell is corresponds to the observation with the maximum beginning value

Link Ratio Function First Four Development Periods

- Red horizontal dotted line: selected value
- Red vertical dotted line: value of alpha such that LRfunction(alpha) = selected vale
- Asymptotes are at the link ratios of the AY with the minimum and maximum beginning values
 - Link ratios between asymptotes termed "reasonable" in paper
 - A less restrictive definition appears possible an unsolved problem at this time

Estimate the development of unpaid loss as of 48 months using the R ChainLadder package

```
> triangle
      12
           24
                36
                      48
           NA 2454 3244
2001
      NA
2002
      NA 1438 2563 3306
2003 434 1464 2482 3100
2004 392 1142 1738 2148
2005 322 880 1331 1644
2006 311
          890 1370 1683
2007 320
         929 1438 1791
2008 322
         942 1486 1888
2009 287
          881 1424 1822
2010 292
         921 1500
2011 299
          956
                     NA
2012 325
           NA
                NA
                     NA
> library(ChainLadder)
> delta <- CLFMdelta(Triangle = triangle,</pre>
     selected = c(3.202, 1.628, 1.28))
> MackChainLadder(triangle,
     alpha = 2 - delta
     est.sigma = "Mack",
     mse.method = "Independence")
```

```
Latest Dev.To.Date Ultimate
                                    IBNR Mack.S.E CV(IBNR)
2001 3,244
                             3,244
                                               0.0
                   1.000
2002
    3,306
                   1.000
                            3,306
                                               0.0
                                                        NaN
      3,100
                            3,100
                                               0.0
2003
                   1.000
                                                        NaN
      2,148
                   1.000
                            2,148
                                               0.0
2004
                                                        NaN
2005
      1,644
                   1.000
                            1,644
                                               0.0
                                                        NaN
2006
      1,683
                   1.000
                            1,683
                                               0.0
                                                        NaN
2007
      1,791
                   1.000
                            1,791
                                               0.0
                                                        NaN
                                               0.0
2008
      1,888
                   1.000
                            1,888
                                                        NaN
      1,822
                                               0.0
2009
                   1.000
                            1,822
                                                        NaN
2010 1,500
                   0.781
                            1,920
                                              97.2
                                                      0.231
2011
        956
                   0.480
                                            171.1
                                                      0.165
                            1,992 1,036
2012
        325
                   0.150 -
                            2,168 1,843
                                             342.7
                                                      0.186
              Totals
Latest:
           23,407.00
                 0.88
           26,706.60
Ultimate:
            3,299.60
IBNR:
Mack S.E.:
              402.17
                                   Coefficient\ of\ Variation=0.12
CV(IBNR):
                 0.12
```

- Note that the default Mack Method using weighted average link ratios results in a CV of 0.09, which is 25% less than the CV indicated by the actual selected factors
- As of this writing, ChainLadder's S.E. calculation
 - limits alpha to the range [-4, 8]
 - does not yet reflect the PSI function adjustment

Questions for the audience

- What is the difference between the Chain Ladder method and the Loss Development method?
- [per 2nd poster on slide 1]
 Is it appropriate to carry out the England and Verrall bootstrap method given a triangle and an arbitrary set of selected link ratios? Why or why not?

Thanks

- To my co-authors Manolis and Ali for being the brains behind this paper
- To the many reviewers for their time, patience, and dedication to our Society