

Motivation

- Efforts to find a "best" estimate of the outstanding claims liability
- In general, different forecasting models give different estimates
 - → How to compare them? Which one is better?

May 201

2012 CAS Spring Meeting : LEVERAGE

Motivation

- Complexity of the underlying claims generating process
- Complexity of the process of claims handling from the time they are notified to their finalization
 - → Variability in the amount paid in any particular calendar year for claims from a given accident year

May 201

ח	20	h	ler	~
М	I ()	U	ш	н

To study the impact of (small) perturbations in each entry of the runoff triangle on the forecast of the outstanding claims liability, given a particular forecasting model.

May 2012

2012 CAS Spring Meeting : LEVERAGE

Robustness

Measuring one aspect of the robustness of a model by looking at *how sensitive* it is relative to the entries of a runoff triangle.

→ How sensitive are the forecast values to (small) perturbations in the data?

May 201

2012 CAS Spring Meeting : LEVERAGE

A measurement of the sensitivity of a statistic

The rate of change of a statistic to a small change in a particular observation

 $\frac{\partial T}{\partial X}$

May 2012

Leverage and Influence

Studies on *Leverage and Influence* in Regression or Linear Models, Non-liner Regression, Two-Way Table, etc

→ Example: The statistic analyzed is the fitted value

May 2012

2012 CAS Spring Meeting : LEVERAGE

Sensitivity Analysis

"The study of how the variation in the output of a model can be apportioned, qualitatively or quantitatively, to different sources of variation, and how a given model depends upon the information fed into it".

Saltelli, A., et al. (Editors). 2000. Sensitivity Analysis, John Wiley & Sons, page 3

May 201

2012 CAS Spring Meeting : LEVERAGE

Measurement of Sensitivity

Leverage
$$\equiv \frac{\Delta \text{estimate O/S}}{\Delta \text{entry}}$$

May 201

The Importance of Leverage

- Gain insights on the forecasting methodology used:
 - → Very or Moderately or Not Sensitive?
- Gain insights on the data:
- → Absolute and Relative importance
- Gain insights on the uncertainty of the estimate of the outstanding claims liability
 - → Example: if the leverage is high then the estimate is uncertain

May 2012

2012 CAS Spring Meeting : LEVERAGE

10

Leverage

- High leverage (positive or negative) is not desirable:
 - → the forecasting methodology used is very sensitive to small perturbations
 - → significant difference in the estimates of the unperturbed and the perturbed data (there is an uncertainty in the estimate)

May 2012

2012 CAS Spring Meeting : LEVERAGE

...

Leverage

- Zero (close to zero) leverage is not desirable
 - → the estimate of the outstanding claims liability is not affected by the perturbations
- Moderate leverage values are desirable
 - → gain insights on the behaviour of the estimate of the outstanding claims liability to small perturbations in the data

May 201

2012 CAS Spring Meeting : LEVERAGE

12

Chain Ladder

Chain Ladder Estimate of the Outstanding Claims Liability of Mack's Data: 52 135

May 2012

Chain Ladder Leverage

1. What happens if claim payments are delayed?

For a particular accident year:

Pay early \rightarrow a "decrease" in outstanding claims liability estimate

Pay later \rightarrow an "increase" in outstanding claims liability estimate

May 201

Chain Ladder Leverage

What happens when there are very few observations to forecast?Large leverage in the last accident year and at the tail

May 2012

2012 CAS Series Mastins : LEVERAGE

Hertig's Model

$$l_{ij} \square N(\mu_j, \sigma_j^2)$$
, $i = 0, 1, \dots, n-2$
 $j = 1, 2, \dots, n-i-1$

May 2012

2012 CAS Spring Meeting : LEVERAGE

Hertig's Model

$$\hat{E}\left[U_{i} \middle| c_{i,n-i-1}\right] = c_{i,n-i-1} e^{\hat{g}_{i}} e^{0.5v_{i}^{2}}$$

$$\hat{g}_{i} = E\left[g_{i}\right] = \mu_{n-i} + \mu_{n-i+1} + \dots + \mu_{n-1}$$

$$Var\left[g_{i}\right] = v_{i}^{2} = \sigma_{i,n-i}^{2} + \sigma_{i,n-i+1}^{2} + \dots + \sigma_{i,n-1}^{2}$$

May 201

Hertig's Model

Hertig's Model Estimate of the Outstanding Claims Liability of Mack's Data: 86 889

May 2012

Hertig's Model Leverage

What happens if claim payments are delayed?

For a particular accident year:

Pay early \rightarrow a "decrease" in outstanding claims liability estimate

Pay later \rightarrow an "increase" in outstanding claims liability estimate

May 2012 2012 CAS Spring I

S Spring Meeting : LEVERAGE

Hertig's Model Leverage

- What happens when there are very few observations to forecast?
 Large leverage in the last accident year and at the tails
- Extremely large leverage in entry (1,0)
 →unusual observation

May 2012

CONCLUSION

The (triangle of) Leverage:

- Show some characteristics/properties of the forecasting model used
 - → same leverage pattern across different runoff triangles

Chain Ladder and Hertig's Model:

The Negative-Zero-Positive Zones

May 2012

2012 CAS Spring Meeting : LEVERAGE

CONCLUSION

Chain Ladder:

- High leverage in the last accident year and at the tails
- Smooth leverage

Hertig's Model:

- High leverage in the last accident year and at the tails
- More variability in leverage

May 2012

2012 CAS Spring Meeting : LEVERAGE

CONCLUSION

- 2. Show some characteristics of the data
 - → Hertig's Leverage reflected the unusual observation in the data whereas that of the Chain Ladder did not.

May 2012