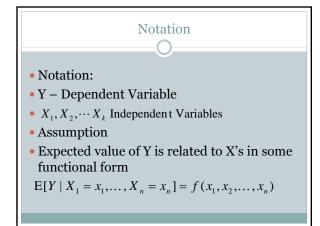


- Ordinary Least Squares (OLS) Regression
- Generalized Linear Models (GLM)
- Copula Regression
- o Continuous case
- o Discrete Case
- Examples



OLS Regression

• The Ordinary Least Squares model has *Y* linearly dependent on the *X*s.

 $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_k X_{ki} + \varepsilon_i$

 $\varepsilon_i \square$ Normal $(0, \sigma^2)$ and independent

• The parameter estimate can be obtained by least squares. The estimate is:

OLS Regression

$$\hat{Y} = (X'X)^{-1}X'y$$
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_i x_{1i} + \dots + \hat{\beta}_k x_{li}$$

OLS - Multivariate Normal Distribution

- Assume $Y, X_1, ..., X_k$ jointly follow a multivariate normal distribution. This is more restrictive than usual OLS.
- Then the conditional distribution of Y | **X** has a normal distribution with mean and variance given by

$$E(Y \mid \underline{X} = \underline{x}) = \underline{\mu}_{y} + \Sigma_{YX} \Sigma_{XX}^{-1} (\underline{x} - \underline{\mu}_{x})$$

 $Variance = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{YX}$

OLS & MVN

- Y-hat = Estimated Conditional mean
- It is the MLE
- Estimated Conditional Variance is the error variance
- OLS and MLE result in same values
- Closed form solution exists

Generalization of OLS

- Is *Y* always linearly related to the *X*s?
- What do you do if the relationship between is non-linear?

GLM – Generalized Linear Model

- *Y*/*x* belongs to the exponential family of distributions and
 - $E(Y \mid \underline{X} = \underline{x}) = g^{-1}(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)$
- g is called the link function
- *x*s are not random
- Conditional variance is no longer constant
- Parameters are estimated by MLE using numerical methods

GLM

- Generalization of GLM: *Y* can have any conditional distribution (See *Loss Models*)
- Computing predicted values is difficult
- No convenient expression for the conditional variance

Copula Regression

- *Y* can have any distribution
- Each X_i can have any distribution
- The joint distribution is described by a Copula
- Estimate *Y* by *E*(*Y*/**X**=*x*) conditional mean

Copula

Ideal Copulas have the following properties:

- ease of simulation
- closed form for conditional density
- different degrees of association available for different pairs of variables.
- Good Candidates are:
- Gaussian or MVN Copula
- t-Copula

MVN Copula -cdf

• CDF for the MVN Copula is

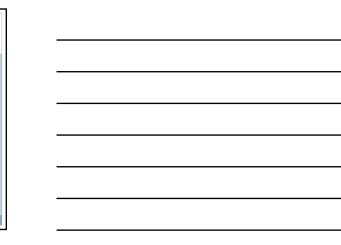
- $F(x_1, x_2, ..., x_n) = G(\Phi^{-1}[F(x_1)], ..., \Phi^{-1}[F(x_n)])$
- where *G* is the multivariate normal cdf with zero mean, unit variance, and correlation matrix *R*.

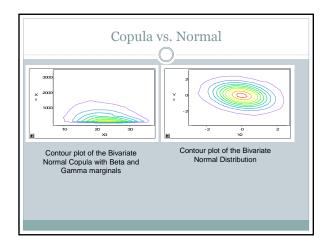


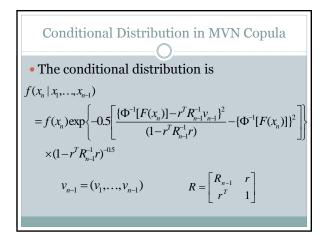
Copula vs. Normal Density

Bivariate Normal Distribution

Bivariate Normal Copula with Beta and Gamma marginals







Copula Regression - Continuous Case

- Parameters are estimated by MLE.
- If $Y, X_1, ..., X_k$ are continuous variables, then we can use the previous equation to find the conditional mean.
- One-dimensional numerical integration is needed to compute the mean.

Copula Regression -Discrete Case

When one of the covariates is discrete **Problem**:

• Determining discrete probabilities from the Gaussian copula requires computing many multivariate normal distribution function values and thus computing the likelihood function is difficult.

Copula Regression – Discrete Case

Solution:

• Replace discrete distribution by a continuous distribution using a uniform kernel.

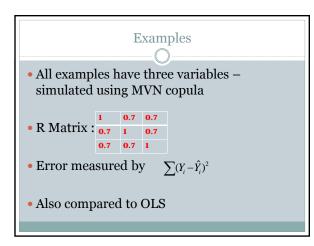
Copula Regression – Standard Errors

- How to compute standard errors of the estimates?
- As *n* -> ∞, the MLE converges to a normal distribution with mean equal to the parameters and covariance the inverse of the information matrix.

$$I(\theta) = -n * E \left[\frac{\partial^2}{\partial \theta^2} \ln(f(X, \theta)) \right]$$

How to compute Standard Errors

- *Loss Models*: "To obtain the information matrix, it is necessary to take both derivatives and expected values, which is not always easy. A way to avoid this problem is to simply not take the expected value."
- It is called "Observed Information."

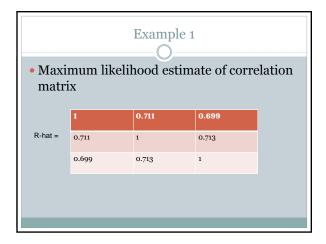


Example 1								
 Dependent – Gamma; Independent – both Pareto X2 did not converge, used gamma model 								
Variables	X1-Pareto	X2-Pa	reto	X3-Gamma				
Parameters	3, 100	4,3	00	3, 100				
MLE	3.44, 161.11	1.04, 11	2.003	3.77, 85.93				
Error:		9000.5 37172.8						

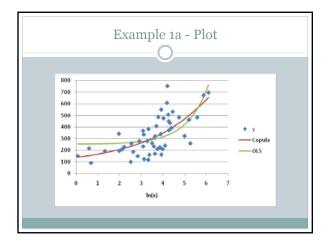
Example 1 - Standard Errors

• Diagonal terms are standard deviations and off-diagonal terms are correlations

		areto	X ₂ Gamma		X ₃ Gamma				
	Alpha ₁	Theta ₁	Alpha ₂	Theta ₂	Alpha ₃	Theta ₃	R(2,1)	R(3,1)	R(3,2)
Alpha ₁	0.266606	0.966067	0.359065	-0.33725	0.349482	-0.33268	-0.42141	-0.33863	-0.29216
Theta ₁	0.966067	15.50974	0.390428	-0.25236	0.346448	-0.26734	-0.37496	-0.29323	-0.25393
Alpha ₂	0.359065	0.390428	0.025217	-0.78766	0.438662	-0.35533	-0.45221	-0.30294	-0.42493
Theta ₂	-0.33725	-0.25236	-0.78766	3.558369	-0.38489	0.464513	0.496853	0.35608	0.470009
Alpha ₃	0.349482	0.346448	0.438662	-0.38489	0.100156	-0.93602	-0.34454	-0.46358	-0.46292
Theta ₃	-0.33268	-0.26734	-0.35533	0.464513	-0.93602	2.485305	0.365629	0.482187	0.481122
R(2,1)	-0.42141	-0.37496	-0.45221	0.496853	-0.34454	0.365629	0.010085	0.457452	0.465885
R(3,1)	-0.33863	-0.29323	-0.30294	0.35608	-0.46358	0.482187	0.457452	0.01008	0.481447
R(3,2)	-0.29216	-0.25393	-0.42493	0.470009	-0.46292	0.481122	0.465885	0.481447	0.009706



- Only X3 (dependent) and X1 used.
- Graph on next slide (with log scale for x) shows the two regression lines.

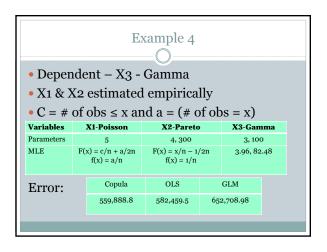


Example 2								
• Dependent – X3 - Gamma								
• X1 & X2 estimated empirically (so no model								
assumption made)								
Variables	X1-Paret	X1-Pareto		areto	X3-Gamma			
Parameters	3, 100		4, 3	300	3, 100			
MLE	F(x) = x/n - f(x) = 1/r		F(x) = x/f(x) =		4.03, 81.04			
Error:	Copula	595,	947.5					
	OLS	637,	172.8					
	GLM	814,	264.754					

Example 2 – empirical model

- As noted earlier, when a marginal distribution is discrete MVN copula calculations are difficult.
- Replace each discrete point with a uniform distribution with small width.
- As the width goes to zero, the results on the previous slide are obtained.

VariablesX1ParametersMLE	l-Poisson	X2-
MLE	5	4
	5.65	1
		4,968 2,459.5



Example 4 – discrete marginal

- Once again, a discrete distribution must be replaced with a continuous model.
- The same technique as before can be used, noting that now it is likely that some values appear more than once.

		Examp	le 5	
 Depend 	ent – X1	- Poiss	on	
• X2, esti	mated by	y expon	ential	
Variables	X1-Poisso	n X	2-Pareto	X3-Gamma
Parameters	5		4, 300	3, 100
MLE	5.65		119.39	3.66, 88.98
Error:	Copula	108.97		
	OLS	114.66		

