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Ordinary Least Squares (OLS) Regression

Generalized Linear Models (GLM)

 Copula Regression
C i  Continuous case

Discrete Case

 Examples

Notation

Notation:

 Y – Dependent Variable

 VariablestIndependen,, 21 kXXX 

Assumption

 Expected value of Y is related to X’s in some 
functional form

Variablest Independen ,, 21 kXXX

1 1 1 2E[ | , , ] ( , , , )n n nY X x X x f x x x   
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OLS Regression

 The Ordinary Least Squares model has Y
linearly dependent on the Xs.

0 1 1 2 2i i i k ki iY X X X         
2Normal(0, ) and independenti �

OLS Regression

 The parameter estimate can be obtained by 
least squares. The estimate is:

1ˆ ( )Y X X X y 

0 1 1
ˆ ˆ ˆ

î i k kiY x x     

OLS - Multivariate Normal Distribution

Assume                       jointly follow a 
multivariate normal distribution. This is 
more restrictive than usual OLS.

 Then the conditional distribution of Y | X 

1, , , kY X X

 Then the conditional distribution of Y | X 
has a normal distribution with mean and 
variance given by

1( | ) ( )y YX XX xE Y X x x     
   1Variance YY YX XX YX
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OLS & MVN

 Y-hat = Estimated Conditional mean

 It is the MLE 

 Estimated Conditional Variance is the error 
ariancevariance

OLS and MLE result in same values 

 Closed form solution exists

Generalization of OLS

 Is Y always linearly related to the Xs? 

What do you do if the relationship between 
is non-linear?

GLM – Generalized Linear Model

 Y|x belongs to the exponential family of 
distributions and

g is called the link f nction

1
0 1 1( | ) ( )k kE Y X x g x x      

 
 g is called the link function

 xs are not random 

 Conditional variance is no longer constant

 Parameters are estimated by MLE using 
numerical methods
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GLM

Generalization of GLM:  Y can have any 
conditional distribution (See Loss Models)

 Computing predicted values is difficult

No con enient e pression for the No convenient expression for the 
conditional variance

Copula Regression

 Y can have any distribution

 Each Xi can have any distribution 

 The joint distribution is described by a 
Cop laCopula

 Estimate Y by E(Y|X=x) – conditional mean

Copula

Ideal Copulas have the following properties:

 ease of simulation 

 closed form for conditional density 

diff d f i i il bl f different degrees of association available for 
different pairs of variables.

Good Candidates are:

Gaussian or MVN Copula

 t-Copula
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MVN Copula -cdf

 CDF for the MVN Copula is 

where G is the multivariate normal cdf with 
ero mean  nit ariance  and correlation 

1 1
1 2 1( , , , ) ( [ ( )], , [ ( )])n nF x x x G F x F x    

zero mean, unit variance, and correlation 
matrix R.

MVN Copula - pdf

 The density function is

1 2

1
0.5

( , , , )

( )
( ) ( ) ( )exp *

n

T

f x x x

v R I v
f x f x f x R


 

  





Where v is a vector with ith element

1 2( ) ( ) ( )exp
2nf x f x f x R  
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Copula vs. Normal Density

Bivariate Normal Copula with Beta 
and Gamma marginals

Bivariate Normal Distribution
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Copula vs. Normal
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Contour plot of the Bivariate 
Normal Copula with Beta and 

Gamma marginals

Contour plot of the Bivariate 
Normal Distribution

Conditional Distribution in MVN Copula

 The conditional distribution is

1 1

1 1 2
1 21 1
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Copula Regression - Continuous Case

 Parameters are estimated by MLE.

 If                        are continuous variables, 
then e can se the pre io s eq ation to 

1, , , kY X X
then we can use the previous equation to 
find the conditional mean.

One-dimensional numerical integration is 
needed to compute the mean.
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Copula Regression -Discrete Case

When one of the covariates is discrete

Problem:

Determining discrete probabilities from the 
Ga ssian cop la req ires comp ting man  Gaussian copula requires computing many 
multivariate normal distribution function 
values and thus computing the likelihood 
function is difficult.

Copula Regression – Discrete Case

Solution:

Replace discrete distribution by a 
continuous distribution using a uniform 
kernelkernel.

Copula Regression – Standard Errors

How to compute standard errors of the 
estimates?

As n -> ∞, the MLE converges to a normal 
distribution with mean equal to the distribution with mean equal to the 
parameters and covariance the inverse of the 
information matrix.

2

2
( ) * ln( ( , ))I n E f X 
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How to compute Standard Errors

 Loss Models:  “To obtain the information 
matrix, it is necessary to take both 
derivatives and expected values, which is not 
always easy.  A way to avoid this problem is always easy.  A way to avoid this problem is 
to simply not take the expected value.”

 It is called “Observed Information.”

Examples

All examples have three variables –
simulated using MVN copula

R Matri  :  
1 0.7 0.7

R Matrix :  

 Error measured by

Also compared to OLS 

0.7 1 0.7

0.7 0.7 1

2)ˆ(  ii YY

Example 1

Dependent – Gamma; Independent – both 
Pareto

X2 did not converge, used gamma model
V i bl X1 P t X2 P t X3 G

Error:  

Variables X1-Pareto X2-Pareto X3-Gamma

Parameters 3, 100 4, 300 3, 100

MLE 3.44, 161.11 1.04, 112.003 3.77, 85.93

Copula 59000.5

OLS 637172.8
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Example 1 - Standard Errors

Diagonal terms are standard deviations and 
off-diagonal terms are correlations

Alpha1 Theta1 Alpha2 Theta2 Alpha3 Theta3 R(2,1) R(3,1) R(3,2)

Alpha 0 266606 0 966067 0 359065 0 33725 0 349482 0 33268 0 42141 0 33863 0 29216

X1 Pareto X2 Gamma X3 Gamma

Alpha1 0.266606 0.966067 0.359065 ‐0.33725 0.349482 ‐0.33268 ‐0.42141 ‐0.33863 ‐0.29216

Theta1 0.966067 15.50974 0.390428 ‐0.25236 0.346448 ‐0.26734 ‐0.37496 ‐0.29323 ‐0.25393

Alpha2 0.359065 0.390428 0.025217 ‐0.78766 0.438662 ‐0.35533 ‐0.45221 ‐0.30294 ‐0.42493

Theta2 ‐0.33725 ‐0.25236 ‐0.78766 3.558369 ‐0.38489 0.464513 0.496853 0.35608 0.470009

Alpha3 0.349482 0.346448 0.438662 ‐0.38489 0.100156 ‐0.93602 ‐0.34454 ‐0.46358 ‐0.46292

Theta3 ‐0.33268 ‐0.26734 ‐0.35533 0.464513 ‐0.93602 2.485305 0.365629 0.482187 0.481122

R(2,1) ‐0.42141 ‐0.37496 ‐0.45221 0.496853 ‐0.34454 0.365629 0.010085 0.457452 0.465885

R(3,1) ‐0.33863 ‐0.29323 ‐0.30294 0.35608 ‐0.46358 0.482187 0.457452 0.01008 0.481447

R(3,2) ‐0.29216 ‐0.25393 ‐0.42493 0.470009 ‐0.46292 0.481122 0.465885 0.481447 0.009706

Example 1

Maximum likelihood estimate of correlation 
matrix

1 0.711 0.699

0.711 1 0.713

0.699 0.713 1

R-hat =

Example 1a – Two dimensional

Only X3 (dependent) and X1 used.

Graph on next slide (with log scale for x) 
shows the two regression lines.
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Example 1a - Plot

Example 2

Dependent – X3 - Gamma

X1 & X2 estimated empirically (so no model 
assumption made)

Variables X1-Pareto X2-Pareto X3-Gamma

Error:  

Variables X1 Pareto X2 Pareto X3 Gamma

Parameters 3, 100 4, 300 3, 100

MLE F(x) = x/n – 1/2n 
f(x) = 1/n

F(x) = x/n – 1/2n 
f(x) = 1/n

4.03, 81.04

Copula 595,947.5

OLS 637,172.8

GLM 814,264.754

Example 2 – empirical model

As noted earlier, when a marginal 
distribution is discrete MVN copula 
calculations are difficult.

Replace each discrete point with a uniform Replace each discrete point with a uniform 
distribution with small width.

As the width goes to zero, the results on the 
previous slide are obtained.
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Example 3

Dependent – X3 – Gamma

X1 has a discrete, parametric, distribution

 Pareto for X2 estimated by Exponential

 Error:  

Variables X1-Poisson X2-Pareto X3-Gamma

Parameters 5 4, 300 3, 100

MLE 5.65 119.39 3.67, 88.98

Copula 574,968

OLS 582,459.5

Example 4

Dependent – X3 - Gamma

X1 & X2 estimated empirically

 C = # of obs ≤ x and a = (# of obs = x)
V i bl X1 P i X2 P t X3 G

Error:  

Variables X1-Poisson X2-Pareto X3-Gamma

Parameters 5 4, 300 3, 100

MLE F(x) = c/n + a/2n
f(x) = a/n

F(x) = x/n – 1/2n 
f(x) = 1/n

3.96, 82.48

Copula OLS GLM

559,888.8 582,459.5 652,708.98

Example 4 – discrete marginal

Once again, a discrete distribution must be 
replaced with a continuous model.

 The same technique as before can be used, 
noting that now it is likely that some values noting that now it is likely that some values 
appear more than once.
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Example 5

Dependent – X1 - Poisson

X2, estimated by exponential
Variables X1-Poisson X2-Pareto X3-Gamma

Parameters 5 4  300 3  100

Error:  

Parameters 5 4, 300 3, 100

MLE 5.65 119.39 3.66, 88.98

Copula 108.97

OLS 114.66

Example 6

Dependent – X1 - Poisson

X2 & X3 estimated empirically

Error:  

Variables X1-Poisson X2-Pareto X3-Gamma

Parameters 5 4, 300 3, 100

MLE 5.67 F(x) = x/n – 1/2n 
f(x) = 1/n

F(x) = x/n – 1/2n 
f(x) = 1/n

Copula 110.04

OLS 114.66


