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Purpose and overview

 Chain ladder

— When is it maximum likelihood and when not?
—When it isnt, is it close to ML?

* Questions considered in the context of the
Tweedie family of distributions for chain
ladder observations
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Framework
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Observations can be anything:
*Counts:
*Reported

. . *Closed
Dimension n
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Chain ladder model

* Model formulation (due to Mack (1991,

1993)):

— Assumption CL1: E[S; ;| S;;,5;;-..,S;] = S;f;,
independently of i for some set of parameters f;
(age-to-age factors)

— Assumption CL2: Rows of the data triangle

are stochastically independent, i.e. Y; and Y
are independent for i#k

* NOTE: chain ladder is distribution free
— No assumption about distribution of Y;;
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Chain ladder estimation
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A slightly different model

* Assumption CL1: E[S,;., | S;1,S;;-.-,S;] = S;f;;,
independently of i for some set of parameters f;
(age-to-age factors)

* Note that this implies

E[Y;] = o;B;

for parameters a;, {3,
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A slightly different model (cont’d)
Chain ladder model
E[S;ji1 | Si1:Siz---,S;] = Syf;

Y,; stochastically
Independent as between
rows of triangle
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A slightly different model (cont'd)

Chain ladder model Cross-classified model
Y; stochastically Y;; stochastically independent

independent as between as between all

rows of triangle observations

10
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A slightly different model (cont'd)

Chain ladder model Cross-classified model

E[Sjs1 | SitsSip--, Syl =Sf,  m==> E[Y;y]= aifj;

")

Y, stochastically @ Y; stochastically independent
independent as between as betwegn all
rows of triangle observations

Neither model more general than the other

11



Distribution of chain ladder ™ s
observations

* We wish to investigate ML estimation for
chain ladder model

* Need to specify likelihood of the Y,

12



Exponential dispersion family = <
(EDF)
* Log-likelihood is

€(y;0,A) = c(A)ly0 — b(0)] + a(y,A)

for some functions a(.,.), b(.) and c(.) and
parameters 0 and A

 May be shown that
b = E[Y] = b’(0)
Var[Y] = b"(0)/c(A)

13
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 EDF log-likelihood:
€(y;0,A) = c(A)[y0 — b(8)] + a(y,A)

« A subset of the EDF is obtained by means of the
following restrictions:

c(A) =A
Var [Y] = pP/A, p<0 or p21
» This restricts the log-likelihood to
€(y;0,A) = Alyd — b(0)] + a(y,A)
with the 2nd restriction causing a restriction on the form of
b(6)
 The Tweedie subset of the EDF is the set of distributions

used by most GLM regression packages (e.g. SAS
PROC GENMOD) 14



Known members of the e e dnalad
Tweedie family

e(y:0,A) =A[y—b(@)]+ | P |Distrib| b(6)

a(y,A) -ution
Var [Y] = uP/A 0 Normal V202
. Special cases 1 Poisson exp 6
2 Gamma | - |n (-8)
3 Inverse | - (-20)”
Gaussian

(1,2) | Compound
Poisson -

gamma 15




Known members of the D vt

Tweedie family
e(y:0,A) =A[y—b(@)]+ | P |Distrib| b(6)
a(y!)\) -ution

Var [Y] = pP/A 0 Normal 1092

« Special cases

1 Poisson exp 8
NOTE: For case p=1
Var [Y] = p/A 2 Gamma | - |n (-6)

which is more general than
Poisson (Var [Y] = )

3 Inverse | - (-20)"
Gaussian
This distribution is called over-
dispersed Poisson (ODP) (1,2) | Compound
Poisson - 16

gamma
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MLE for Tweedie data

 Model form

— Cross-classified model with Tweedie distributed
observations

— Slightly generalised variance
Var [Yij] = pijlf’l)\wij
where w; is new and is the weight associated with Y
MLE equations are:
2RO wy P [y — pgl = 0, 1=1,...,n
20wy P [y — ] =0, j=1,...,n
where

> R) denotes summation over the entire row i of the
triangle

% €l) denotes summation over the entire column | 17
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MLE for Tweedie data (cont'd)

Accident
period i

Development period |

Wi l‘ij1'p [yij - Uij]

Dimension n

Sums of these quantities over all
rows and columns set to zero

This is a marginal sum method
of estimation

18



case 1

 MLE equations
ZR(f) Wi |~'ij1'IO ly; — m] =0, i=1,...,n
20wy gy’ P [y — pl = 0, j=1,...,n
* Special case p=w;=1 (over-dispersed Poisson
Yi)
ZR(T) ly; — m] =0, 1=1,...,n
2 C0 [y — pl =0, j=1,...,n
* The solution to this system is known to be chain
ladder (Hachemeister & Stanard, 1975)

19



case 2

 MLE equations

R(i) AP .. —u.] = =

S
ij Mij ! i ) """y

* Special case p=2 (gamma Y;)

RO wy [y [ 4 -11 =0, i=1,...,n

> O wy [y I 4; -11=0, j=1,...,n
* The solution to this system was studied by

Mack (1991)

20
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MLE for Tweedie data — chain® %=
ladder as a limiting case

* It may be shown that the chain ladder
approximates the solution to the Tweedie
cross-classified model if any of the
following conditions holds:

— Observation variances are small

— p Is close to 1

« compound (over-dispersed) Poisson with gamma
severity with low coefficient of variation)

— Weights w; p;' vary little over the triangle

21



MLE for Tweedie data —
multiplicative weights

 MLE equations
RO wy P [y — W] = 0,i=1,...,n
> ch) W;; “ij1-p [Yij - ”ij] =0,j=1,...,n
« Consider case of multiplicative weights
W; = U V;
* Recall
Mij = oi;

Consulting Actuaries

22



MLE for Tweedie data — el
multiplicative weights

 MLE equations
> R0 Wi Pij1'p [y;— ;] =0,i=1,...,n
> U) w; M;'P [y; — 1] =0, j=1,...,n
« Consider case of multiplicative weights

* Recall
’ Mij = oi;
* ence
ZR(_i) [Wij Mijal-p ylj le “Ij ] = =1 e
ZC(J) [Wij “ij1_p ylj le IJU ] = = cenal
> RO [Zij - g,] =0,i 1
> o) [z, -8;1=0,] n
with

Z;=w; Pij1'p Y;
Sii = W; IJijz'p = [u;0;%P] [Vjﬁjz'p] = a; b, 23



MLE for Tweedie data — Y ol
multiplicative weights

ZR(I) [le - §U] = O, i=1,...,n
>0 [z; - §;]1 =0, j=1,...,n
with
Zi =Wy Nij1'p Y;
§ij = [u;0;%P] [VijZ'p] =a; b,
* Note that these are chain ladder equations for
observations Z; and parameters a;, b,

« But solution of chain ladder requires fore-
knowledge of p; which are targets of estimation

« Solution proceeds by iteration
24



MLE for Tweedie data — numeRcaf-=
solution for multiplicative weights

* Chain ladder on
— Observations Z;; = w;; h;"P Yy [W; = o8]
— With expectations §; = [u;0;*P] [v;8,%P] = a; b,
* In r-th iteration, apply chain ladder
estimation to
— Observations Z; = w; ()P Y, [pl); =
a(,B(r)]
— With expectations § (;; =
[ui(q(r+1)i)2-p] [Vj(B(r+1)j)2-p] - a(r+1)i b(r+1)j

» This produces new estimates a™");, b7, N



MLE for Tweedie data — numeRcaf-=

solution for multiplicative weights

Diagrammatically

Actual variables

Y.

!

E[Yij] =ao; B

26



MLE for Tweedie data — numeRcaf-=
solution for multiplicative weights

Diagrammatically

Actual variables Transformed variables

Y;; Z(r)ij = W; (P(r)ij)1'p Y;;

E[Yij] = q; Bj E[Z(r)ij] = a(l""1)i b(r+1 :

27



MLE for Tweedie data — numeRcaf-=
solution for multiplicative weights

Diagrammatically

Actual variables Transformed variables

Y.. Z(")ij =Wy (p(r)ij)"'P Yij

ij
E[Yij] = q; Bj E[Z(r)ij] — a(l""1)i b(r+1 :

Chain ladder solution for
a(r+1). b(r+1)j

28



MLE for Tweedie data — numeRcaf-=
solution for multiplicative weights

Diagrammatically

Actual variables Transformed variables
Yij Z(r)ij =W (p(r)ij)1-p Yij
E[Yij] = q; Bj E[Z(r)ij] — a(l""1)i b(r+1 :
o = u.q2e Chain ladder solution for
a(r+1)i, B(r+1)j < bli - uliBIiz.p a(r+1)i, b(r+1)j

29



MLE for Tweedie data — numeRcaf-=
solution for multiplicative weights

Diagrammatically

Actual variables Transformed variables
Yij Z(r)ij =W (IJ(r)ij)1-p Yij
E[Yij] = q; Bj E[Z(r)ij] = a(l""1)i b(r+1 :
o = u.q2e Chain ladder solution for
a(r+1)i, l3(r+1)j < bli - uliBIiz.p a(r+1)i, b(r+1)j

IJ('""")ij = q(r+1)ip(r+1)j 30



MLE for Tweedie data — numeRcaf-=

solution for multiplicative weights

Diagrammatically

Actual variables

Transformed variables

Y..

!

E[Y;] = a; B;

Z(r)ij = Wj; (P(r)ij)1'p Y;;
E[Z0,] = at*, by,

2 = u.q2e Chain ladder solution for

alr+ 1), B+, -
— IJ('""")ij = q(r+1)ip(r+1)j

b, = u,f?? a(r+1)i’ b(r+1)j

31



MLE for Tweedie data — numeRcaf-=
solution for multiplicative weights

 This iterative procedure converges quickly for
small values of p

— Shorter tailed distributions
— Converges in a single iteration for p=1

« Converges more slowly as p increases

* Recall that 1<p<2 for compound Poisson
observations

* Numerical experiment requiring convergence to
accuracy of 0.05% in loss reserve:
— p=2 (gamma): 5 iterations
— p=2.4 (fairly long tailed): 24 iterations
32
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Practical implications

* The chain ladder (with multiplicative weights
w;=u;v;) will give MLE for p=1

* For compound Poisson cells of the triangle
1<p<2, and the chain ladder is not MLE

* The difference from MLE increases with p

« Larger p means more extreme variance for large
mean values (Var[Y;] = uP/A)

* |n practice one needs to consider the likely value
of p in this relation in deciding whether or not the
chain ladder is likely to produce efficient

estimates (and forecasts)
33



