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Summary

The distribution of the total incurred losses of an accident year (or underwriting year) is considered.  Before commencement of the accident year, there is a prior on this quantity.  The distribution may evolve over time according to Bayesian revision which takes account of the accumulation of data with time.

The distribution in question can be made subject to various assumptions and restrictions.  The different forms of these are explored in a sequence of papers that includes the present one.

A previous paper examined the situation in which no restrictions were imposed.  The resulting models were referred to as non-parametric.

The present paper considers the case in which the posterior-to-data estimates of the subject distribution are restricted to a specific parametric family.  These models are referred to as parametric.  The subject distribution evolves with the evolution of its parameters under Bayesian revision.  The credibility approximations to this revision are worked out in general (Section 4) and for the special case of normally distributed data (Section 5).

The results are illustrated by application to a very simply example (Section 6).  They are illustrated further by application to a more extensive example involving real data (Section 7).  The examples use the same respective data sets as in the previous paper.

All models to this point represent the loss experience of each development year in terms of a separate set of parameters applicable to just that year.  Section 9 analyses the case in which all of these parameters are expressed as functions of a reduced parameter set.  Again, a numerical example is given.

Keywords:  distribution of incurred losses, credibility theory.

1.
Introduction 

This paper is written at the request of, and is partly funded by, the Casualty Actuarial Society’s Committee on Theory of Risk.  It is the first of a trio of papers whose purpose is to answer the following question, posed by the Committee:

Assume you know the aggregate loss distribution at policy inception and you have expected patterns of claims reporting, losses emerging and losses paid and other pertinent information, how do you modify the distribution as the policy matures and more information becomes available?  Actuaries have historically dealt with the problem of modifying the expectation conditional on emerged information.  This expands the problem to continuously modifying the whole distribution from inception until it decays to a point.  One might expect that there are at least two separate states that are important.  There is the exposure state.  It is during this period that claims can attach to the policy.  Once this period is over no new claims can attach.  The second state is the discovery or development state.  In this state claims that already attached to the policy can become known and their value can begin developing.  These two states may have to be treated separately.

In general terms, this brief requires the extension of conventional point estimation of incurred losses to their companion distributions.  Specifically, the evolution of this distribution over time is required as the relevant period of origin matures.

Expressed in this way, the problem takes on a natural Bayesian form.  For any particular year of origin (the generic name for an accident year, underwriting year, etc), one begins with a prior distribution of incurred losses which applies in advance of data collection.  As the period of origin develops, loss data accumulate, and may be used for progressive Bayesian revision of the prior.

When the period of origin is fully mature, the amount of incurred losses is known with certainty.  The Bayesian revision of the prior is then a single point distribution.  The present paper addresses the question of how the Bayesian revision of the prior evolves over time from the prior itself to the final degenerate distribution.

This evolution can take two distinct forms. On the one hand, one may impose no restrictions on the posterior distributions arising from the Bayesian revisions.  These posterior distributions will depend on the empirical distributions of certain observations.  Such models are non-parametric.

Alternatively, the posterior distributions may be assumed to come from some defined family.  For example, it may be assumed that the posterior-to-data distribution of incurred losses, as assessed at a particular point of development of the period of origin, is log normal.  Any estimation questions must relate to the parameters which define the distribution within the chosen family.

These are parametric models.  They are, in certain respects, more flexible than non-parametric, but lead to quite different estimation procedures.

The first paper (Taylor, 1999) dealt with non-parametric models only.  This deals with certain parametric models.  Within the parametric class one may identify two sub-classes according to whether or not the parameters which describe the distributions involved are fixed quantities, or themselves evolve over time.  These are the cases of static and dynamic parameters respectively.

The present paper addresses the case of static parametric models.  A future paper, the final one in the trio, will deal with dynamic parametric models.

Familiarity with the earlier paper will be assumed here.  In particular, the Bayesian and credibility background introduced and described there will be assumed.

As far as possible, the notation used here will be common with the earlier paper.

2.
Motivational example 

Consider the same motivational example as in the earlier paper.  The data were set out in the Table 2.2 of that paper, which is reproduced as Table 2.1 here.

Table 2.1
Payments per Claim Incurred

Accident
PPCI ($) in Development Year

Year
0
1
2
3
4

1994

1,069
4,249
1,818
426
215

1995

1,033
3,896
2,128
496


1996

1,138
3,722
1,863



1997

1,126
3,960




1998

915





Prior mean

1,000
4,000
2,000
500
200

Let cell (i,j) represent development year j of accident year i, and let X(i,j) denote the Payments per Claim Incurred (PPCI) in respect of that cell.

Assume that, for each fixed j, the X(i,j) are an iid sample from a normal distribution with
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Suppose that the X(i,j) (over all i,j) form a mutually stochastically independent set (for given 
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).  Suppose also that 
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This framework is very similar to that in the earlier paper.  Indeed, (2.1) and (2.2) are identical to (2.2) and (2.3) of that paper.  The essential difference is the imposition here of normality on X(i,j) whereas the distribution of X(i,j) was left free in the earlier paper.

As in the earlier paper, this example focuses attention on the incurred losses per claim in respect of accident year 1996:
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with x(i,j) denoting the realisation of the random variable X(i,j).

Consider the distribution of the X(1996,3), say, conditional on the data in Table 2.1, ie 
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.  It is known that this distribution is normal with variance 
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  What must be estimated is 
[image: image11.wmf](3)

q

 conditional on 
[image: image12.wmf]{

}

(,),1994,1998

xijiij

³+£

.

This fixes an estimate of the distribution of X(1996,3) conditional on the data.  A similar conditional estimate of the distribution of X(1996,4) may be obtained.  These two distributions generate the distribution of the quantity (2.3).

The remainder of the paper will be concerned with the application of credibility theory to the estimation of the distribution of quantities like
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conditional on data, as they evolve from k = -1 to k = 4, under the convention that
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3.
Bayesian framework 

The example of Section 2 is generalised as follows.

Let X(i,j) denote some stochastic variable that is indexed by accident year i and development year j, 
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Let k = i + j = experience year.  As in the earlier paper, k labels diagonals in the rectangular array with rows and columns labelled by accident years and development years respectively.

Let
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= data up to and including experience year k
(3.1)

where the prime indicates that the symbol to which it is affixed is being labelled by experience year.

Suppose that X(i,j) has d.f. 
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 are all stochastically independent, and iid for fixed j.  It will be convenient to adopt the abbreviated notation:
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the upper 
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 indicating the conditioning.

Now suppose that the 
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 are unobservable parameters, representing iid samplings from a d.f. 
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which represents the expectation of 
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Once data 
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 have accumulated, one may calculate the Bayesian revision of 
[image: image29.wmf]()

j

q

:


[image: image30.wmf][

]

()

()()|().

k

jEjXk

qq

¢

=


(3.4)

One will also be interested in the Bayesian revision of 
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 the posterior random variable corresponding to 
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An alternative is to replace the strict Bayesian revision of 
[image: image36.wmf](

)

j

G

g

 by the quantity


[image: image37.wmf](

)

()

|().

k

Gj

q

g


(3.5)

One may further approximate the true Bayesian revision of 
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Denote the quantity (3.5) with 
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Subsequent sections will be concerned with credibility approximations to (3.4) and their application to (3.5).

4.
Credibility theory 

4.1
Multi-dimensional credibility

Section 4.1 of the earlier paper recited elementary credibility theory.  In the present paper, the subject of estimation 
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 is in general a multi-dimensional quantity, and hence a multi-dimensional version of credibility theory is required.  The theory summarised below derives ultimately from Jewell (1974).

Consider a real m-vector random variable 
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where 
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 is a given design matrix, and vector and matrix dimensions are optionally written below their associated symbols.

Suppose that the 
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As assumed in Section 3, 
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 etc are realisations of stochastically independent latent parameters.

Since attention will be confined initially to a fixed (but arbitrary) value of j, it will be convenient to suppress this subscript temporarily.  On this understanding, (4.1) is re-written in the form:
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Write
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and abbreviate 
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Unconditional operators such as 
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where 
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Let 
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Suppose that 
[image: image71.wmf]i

Y

 exists for i = 1, 2, …, n, and write
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where the upper T denotes matrix transposition.

Consider estimators 
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where 
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which is a measure of error in the linearised estimator of 
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By (4.1a), (4.2) and (4.8), it is possible to write (4.9) in the form:
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Credibility estimators of 
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4.2 Inhomogeneous credibility

The required optimisation of (4.10) is carried out in Appendix A (which largely follows the technique laid down by Hachemeister (1975)), yielding the following result.
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where 
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Note that 
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The weighted average form of (4.11) can be made clearer if it is re-written as follows:
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where
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[by (4.13) and (4.15)]
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This shows 
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 also to be a “weighted average” of the regression estimates 
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  The matrix Z  is a credibility matrix representing the weight given to the data based estimate 
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Estimators (4.11) and (4.11a) are called inhomogeneous credibility estimators because the first member inside the square bracket is a constant (ie independent of the data) and renders (4.11) and (4.11a) inhomogeneous in the data vector Y.

Note that a credibility estimator of the parameter vector 
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in (4.11a) (though not in (4.12) or (4.14)).

4.3
Homogenous credibility
The inhomogeneous credibility estimators (4.11) and (4.11a) require knowledge of the prior mean 
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  This is consistent with the situation outlined in Section 1.  However, it is interesting to consider the alternative case, in which this quantity is unknown.  It can be accommodated by setting 
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The estimator (4.8) which results when it is restricted to be unbiased as an estimator of 
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In parallel with Section 4.2, this is obtained by minimising (4.10), but now with 
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 and subject to the unbiasedness constraint
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The necessary calculations are made in Appendix B, where it is found that 
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Thus, in the absence of a prior mean for 
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4.4
Diagonal case
A case worthy of special consideration in Sections 4.2 and 4.3 is that in which 
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Then (4.11) – (4.16) reduce to the following inhomogeneous result:
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with
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and 
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 denoting the r-th component of 
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Note that the multi-dimensional case is here reduced to p applications of 1-dimensional credibility.

It is also interesting to observe that dependency on 
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 has vanished from some of these results.  Thus, 
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5.
Normal cell distributions 

5.1
Parameter estimation

Consider the case in which the X(i,j) of Section 3 are conditionally normally distributed:
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Now suppose that the “observation vector” 
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where
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and 
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 is the number of data points X(i,j) for given j.

In this case,
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which is (4.1) with
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It may be checked that 
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taking into account the normality, and hence zero skewness, of the X(i,j).

Because of (5.6), 
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 defined in (4.5) is diagonal.  Moreover, it is evident from (5.1) that the stochastic properties of X(i,j) are independent of i.  In particular,
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If 
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 is also diagonal, all conditions hold for the diagonal case of Section 4.4.  This means that results (4.23) – (4.25) are applicable.

With (5.5) and (5.7) taken into account, these are as follows:
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Recall that, in this notation from Section 4, the argument j is suppressed and so 
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 is written as just n.

Note also that the special case (5.2) implies constraints on the parameters 
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by (4.5), (4.21) and (5.7).  The second last step in arriving at (5.11) used the fact that the inner expectation is equal to a conditional sample variance.

Now write out the results (5.8) – (5.10) explicitly for the cases r = 1,2.  For r = 2, taking (5.11) into account, 
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with
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In (5.12), 
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 in (5.9) for the case r = 1.  In this case (5.8) – (5.10) yield
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with
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Here, (5.15) is a credibility estimator of 
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[image: image191.wmf][

]

11

(),

Ej

bq

=

 the prior mean, and 
[image: image192.wmf]1

q

, the mean of observations X(h,j).  This is in fact the usual 1-dimensional credibility estimator derived by Bühlmann (1967) and with 
[image: image193.wmf]2

ˆ

i

Y

, the estimator of 
[image: image194.wmf]1

v

, ultimately 
[image: image195.wmf](

)

2

1

z

=

 equal to the standard estimator according to De Vylder (1981).

Thus, in the present case, credibility estimation of a distribution consists of the usual credibility estimation of its mean, supplemented by one other equation, providing credibility estimation of its variance.

5.2
Forecasts
Section 3 introduced the notation 
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By (5.1) and the fact that 
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The forecast 
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Hence,
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where use has been made of the fact that the three summands on the right side of (5.20) are stochastically independent.  In particular, the independence of the first and last of these summands derives from the fact that the first relates entirely to the future, while the last, involving 
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, relates entirely to past observations.

By (5.10), (4.5) and (4.21),
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Substitution of the results, and (4.4) and (4.22), in (5.21) yields
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This quantity may be estimated by 
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Note that (5.16) may be rewritten in the form:
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so that (5.22) has the alternative form:
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6.
Application to motivational example 

The results of Section 5 are illustrated by application to the data set out in Table 2.1.  The last row of that table gave values of 
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 for the various j.  These are incorporated in Table 6.1 which gives other parameters needed for application of Section 5.

Table 6.1    Credibility parameters


j = 0
1
2
3
4
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It is evident from (5.13) that the ratio 
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  Just this ratio is given in the table as it may be easier to form a prior view of it rather than its components.

Table 6.2 gives the summary statistics 
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 which serve as input to the credibility results.

Table 6.2     Summary statistics


j = 0
1
2
3
4








At k = 0:
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At k = 1:
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At k = 2:







[image: image236.wmf]1

q


1,080
4,072
1,818




[image: image237.wmf]2

q


53
268
500










At k = 3:
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At k = 4:
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Note that when j = k, 
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Tables 6.3 to 6.5 display:

· credibility factors

· credibility estimates

· credibility forecasts

respectively.  Note that 
[image: image246.wmf]1

z

 in Table 6.3 draws on Table 6.4 (see (5.16)).  Table 6.4 applies estimates (5.12) and (5.15), ie “mean” is an estimate of 
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 while “s.d.” relates to a Bayesian revision of the “within cell” variance 
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, also based on data 
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The estimates in Table 6.4 relate to past cells, as taking into account data up to and including the nominated experience year k.  On the other hand, Table 6.5 gives forecast parameters at each value of k, deriving each root mean square error of prediction (RMSEP) from (5.23).

Table 6.3     Credibility factors


j = 0
1
2
3
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At k = 0:
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At k = 1:
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At k = 2:
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At k = 3:
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At k = 4:
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Table 6.4     Credibility estimates of parameters


j = 0
1
2
3
4








At k = 0:






mean
1,004





s.d.
400












At k = 1:






mean
1,010
4,018




s.d.
283
1,000











At k = 2:






mean
1,025
4,015
1,941



s.d.
256
666
500










At k = 3:






mean
1,038
3,986
1,984
441


s.d.
234
604
320
150









At k = 4:






mean
1,028
3,983
1,956
463
212

s.d.
227
566
303
90
100

Table 6.5     Credibility forecasts of parameters


j = 0
1
2
3
4








At k = 0:






mean
1,004





RMSEP
413












At k = 1:






mean
1,010
4,018




RMSEP
303
1,021











At k = 2:






mean
1,025
4,015
1,941



RMSEP
279
700
547










At k = 3:






mean
1,038
3,986
1,984
441


RMSEP
260
643
389
220









At k = 4:






mean
1,028
3,983
1,956
463
212

RMSEP
253
608
374
179
146

As an example of forecasting outstanding losses, consider accident year 1997 at the end of j = 1, ie k = 4.  The outstanding losses are


[image: image262.wmf]4

2

(1997,),

j

Xj

=

å


and Table 6.5 gives the mean and variance of this quantity as:

mean
= 1,956 + 463 + 212
= 2,632

s.d.
= (374)2 + (179) 2 + (146) 2
= (440) 2.

These compare with prior estimates (Table 6.1):

mean
= 2,000 + 500 + 200
= 2,700

s.d.
= (200)2 + (150) 2 + (100) 2 + (500) 2 + (150) 2 + (100) 2
= (596) 2.

Figure 6.1 provides a comparative plot of the two normal distributions, the prior and the credible distribution.
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7.
A more realistic example 

The present section will illustrate the results of Section 5 by reference to the same real data set as used in Section 9 of the earlier paper.  The data appeared there in Table 9.1 in the form of incremental paid losses.

Table 9.2 of that paper converted them to logged age-to-age factors, and for convenience these are reported here as Table 7.2.  The underlying incurred losses, adjusted to constant dollar values for inflation, appear in Table 7.1.

Table 7.1
Incurred Losses



Period
Incurred losses to end of development year n=


















of origin




















0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17


$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000





















1978
9,268
18,263
20,182
22,383
22,782
26,348
26,172
26,184
25,455
25,740
25,711
25,452
25,460
25,422
25,386
25,520
25,646
25,469

1979
9,848
16,123
17,099
18,544
20,534
21,554
23,219
22,381
21,584
21,408
20,857
21,163
20,482
19,971
19,958
19,947
19,991


1980
13,990
22,484
24,950
33,255
33,295
34,308
34,022
34,023
33,842
33,933
33,570
31,881
32,203
32,345
32,250
32,168



1981
16,550
28,056
39,995
42,459
42,797
42,755
42,435
42,302
42,095
41,606
40,440
40,432
40,326
40,337
40,096




1982
11,100
31,620
40,852
38,831
39,516
39,870
40,358
40,355
40,116
39,888
39,898
40,147
39,827
40,200





1983
15,677
33,074
35,592
35,721
38,652
39,418
39,223
39,696
37,769
37,894
37,369
37,345
37,075






1984
20,375
33,555
41,756
45,125
47,284
51,710
52,147
51,187
51,950
50,967
51,461
51,382







1985
9,800
24,663
36,061
37,927
40,042
40,562
40,362
40,884
40,597
41,304
42,378








1986
11,380
26,843
34,931
37,805
41,277
44,901
45,867
45,404
45,347
44,383









1987
10,226
20,511
26,882
32,326
35,257
40,557
43,753
44,609
44,196










1988
8,170
18,567
26,472
33,002
36,321
37,047
39,675
40,398











1989
10,433
19,484
32,103
38,936
45,851
45,133
45,501












1990
9,661
23,808
32,966
42,907
46,930
49,300













1991
14,275
25,551
33,754
38,674
41,132














1992
13,245
29,206
36,987
44,075















1993
14,711
27,082
34,230
















1994
12,476
23,126

















1995
9,715






































Table 7.2
Logged incurred loss age to age factors
Period
Logged age to age factor from development year n to n+1

















of origin
development year n=


















0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16




















1978
0.678
0.100
0.104
0.018
0.145
-0.007
0.000
-0.028
0.011
-0.001
-0.010
0.000
-0.001
-0.001
0.005
0.005
-0.007

1979
0.493
0.059
0.081
0.102
0.048
0.074
-0.037
-0.036
-0.008
-0.026
0.015
-0.033
-0.025
-0.001
-0.001
0.002


1980
0.474
0.104
0.287
0.001
0.030
-0.008
0.000
-0.005
0.003
-0.011
-0.052
0.010
0.004
-0.003
-0.003



1981
0.528
0.355
0.060
0.008
-0.001
-0.008
-0.003
-0.005
-0.012
-0.028
-0.000
-0.003
0.000
-0.006




1982
1.047
0.256
-0.051
0.017
0.009
0.012
-0.000
-0.006
-0.006
0.000
0.006
-0.008
0.009





1983
0.747
0.073
0.004
0.079
0.020
-0.005
0.012
-0.050
0.003
-0.014
-0.001
-0.007






1984
0.499
0.219
0.078
0.047
0.089
0.008
-0.019
0.015
-0.019
0.010
-0.002







1985
0.923
0.380
0.050
0.054
0.013
-0.005
0.013
-0.007
0.017
0.026








1986
0.858
0.263
0.079
0.088
0.084
0.021
-0.010
-0.001
-0.022









1987
0.696
0.270
0.184
0.087
0.140
0.076
0.019
-0.009










1988
0.821
0.355
0.220
0.096
0.020
0.069
0.018











1989
0.625
0.499
0.193
0.163
-0.016
0.008












1990
0.902
0.325
0.264
0.090
0.049













1991
0.582
0.278
0.136
0.062














1992
0.791
0.236
0.175















1993
0.610
0.234
















1994
0.617




































Average
0.699
0.250
0.124
0.065
0.049
0.020
-0.001
-0.013
-0.004
-0.006
-0.006
-0.007
-0.003
-0.003
0.001
0.004
-0.007




















Standard


















deviation
0.169
0.121
0.095
0.045
0.052
0.033
0.017
0.019
0.013
0.018
0.021
0.014
0.013
0.002
0.004
0.002


The quantities appearing in Table 7.2 provide the “observations” for the example.  The prior estimates of parameters are as set out in Table 7.3.

Table 7.3     Prior parameter estimates

j

[image: image264.wmf]1

b



[image: image265.wmf](

)

1

2

2

b







0
0.60
0.152

1
0.20
0.122

2
0.10
0.097

3
0.05
0.078

4
0.03
0.062

5
0.02
0.050





6 and later
0
0.19 x 
[image: image266.wmf]0.8

j



These parameter values are consistent with their counterparts in Table 9.3 of the earlier paper.

Other parameters are:
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The results of Section 5 are applied to this example.  The detailed calculations appear in Appendix C.

Tables C.11 and C.12 in particular give forecast parameters of the normal distributions associated with the ultimate incurred losses of each accident year, as it develops from its start to the completion of experience in 1995.

Figure 7.1 illustrates excerpts from these tables, showing a selection from the developing distribution of incurred losses associated with accident year 1980.  The distributions plotted represent forecasts at the ends of 1980, 1981, 1983, 1988 and 1995 respectively.

The different distributions can be identified by their increasing concentration (and therefore increasing peak height) with increasing development.  Thus, the distribution at the end of 1995, with only two years of development remaining, is highly concentrated.
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8.
Models spanning different development years 

8.1
Theory
The models dealt with in Sections 5 to 7 were described by (5.1) which assumed that each development year was characterised by two parameters.  Those parameters were specific to their own development year and no other.

As a result, the model applied in Section 7 assumed 32 parameters.  It will often be possible to describe an accident year more parsimoniously than this, by assuming the parameters to be represented by parametric functions of (say) development year.

For example, suppose that the vector 
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 appearing in (4.1) can be expressed in the form:
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where 
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Now (8.1) may be written in matrix form:
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and U is the matrix with diagonal block form:
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Equation (8.3) reduces the number of parameters to be estimated from pJ to Q.

Now consider a real m-vector random variable 
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for a suitable matrix 
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with


[image: image301.wmf].

ijij

CBU

=


(8.10)

It is now possible to apply the credibility theory of Section 4 to obtain credibility estimates of 
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As in Section 4, assume that the 
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 form a stochastically mutually independent set.  Also assume that 
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 is a single realisation of some latent variable.

Equations (8.9) and (8.11) correspond to (4.1a) and (4.2) respectively.  The remainder of Sections 4.1 to 4.3 go through for the present model if certain changes are made.
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for some integer 
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By (8.9), 
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with
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and 
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 denoting the r-th row of 
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With these definitions, Sections 4.1 to 4.3 go through for the present model if the following replacements are made:
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In the present context, 
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The inhomogeneous credibility estimator 
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 is given by (4.11) – (4.17) subject to the replacements (8.15) and (8.16).  Similarly, the homogeneous credibility estimator is given by (4.19) with the same replacement.

8.2
Diagonal case
8.2.1
Credibility estimates

Consider now the diagonal case of Section 4.4.  This cannot be extended directly to the present context because 
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with 
[image: image333.wmf]()

,1,...,,

r

ij

Brp

=

 of dimension 1 x J.

By (8.7), U is also block diagonal with 
[image: image334.wmf]()

r

U

 of dimension 
[image: image335.wmf]x

r

JQ

 (see (8.2)).  Then (8.10) gives


[image: image336.wmf]ij

C


= diag 
[image: image337.wmf](

)

(1)()

,...,

p

ijij

CC


(8.21)

with 
[image: image338.wmf]()

r

ij

C

 of dimension 1 x 
[image: image339.wmf].

r

Q


By (8.14), 
[image: image340.wmf]i

C

 also takes block diagonal form:


[image: image341.wmf](

)

(

)

(1)()

1x

 diag ,...,,

i

p

iii

pJQ

CCC

+

=


(8.22)

with


[image: image342.wmf](

)

(

)

()()()()

01

1x

,,...,.

i

ir

T

rrTrTrT

iiiiJ

JQ

CCCC

+

=


(8.23)

Now suppose, in addition, that 
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Now apply the results of Sections 4.1 to 4.3 with replacements (8.15) and (8.16).  The matrices 
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This causes the counterpart of the main result (4.11) to decouple into p separate equations just as in (4.23), specifically:
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where 
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with 
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8.2.2
Forecasts
As in Section 5, let the forecast future values of X(i), based on data up to period k, be denoted by 
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and the MSEP is
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With some routine algebra, it may be shown that
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Substitution of (8.34) in (8.33) yields
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which is parallel with (5.25).

8.3
Example
Consider again the example dealt with in Section 7.  Continue to assume that
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where the X(i,j) denote the logged age-to-age factors represented in Table 7.2.  Also continue to let
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with 
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 defined by (5.3).

Now assume the following parametric form for 
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Comparison of (8.38) and (8.39) with (8.1) yields
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Thus application of (8.3) – (8.7) to the present example gives
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Then, by (8.10),
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and, by (8.14),
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Results (8.29) – (8.31) hold for the present example.  The covariance matrix 
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and so 
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Substitution of (8.55) in place of 
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 in (8.28) produces an estimated credibility matrix parallel to (5.16).

The above calculations are carried out for the sequence of data triangles 
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The prior parameter values are:
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Excerpts of the results are given below at the same dates as in Figure 7.1.

At end 1980:
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At end 1981:
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At end 1983:
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At end 1988:
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At end 1995:
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Table 8.1
Credibility estimates 
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Table 8.2
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0.020
0.013















1982
0.018
0.011
0.007














1983
0.021
0.013
0.008
0.0054













1984
0.034
0.022
0.014
0.0090
0.0058












1985
0.032
0.020
0.013
0.0083
0.0053
0.0034











1986
0.031
0.020
0.013
0.0081
0.0052
0.0033
0.0021










1987
0.032
0.020
0.013
0.0083
0.0053
0.0034
0.0022
0.0014









1988
0.031
0.020
0.013
0.0082
0.0053
0.0034
0.0022
0.0014
0.0009








1989
0.029
0.018
0.012
0.0076
0.0048
0.0031
0.0020
0.0013
0.0008
0.0005







1990
0.027
0.018
0.011
0.0072
0.0046
0.0029
0.0019
0.0012
0.0008
0.0005
0.0003






1991
0.027
0.017
0.011
0.0070
0.0045
0.0029
0.0018
0.0012
0.0007
0.0005
0.0003
0.0002





1992
0.028
0.018
0.012
0.0074
0.0047
0.0030
0.0019
0.0012
0.0008
0.0005
0.0003
0.0002
0.0001




1993
0.027
0.017
0.011
0.0072
0.0046
0.0029
0.0019
0.0012
0.0008
0.0005
0.0003
0.0002
0.0001
0.0001



1994
0.026
0.017
0.011
0.0069
0.0044
0.0028
0.0018
0.0012
0.0007
0.0005
0.0003
0.0002
0.0001
0.0001
0.0001


1995
0.025
0.016
0.010
0.0066
0.0042
0.0027
0.0017
0.0011
0.0007
0.0005
0.0003
0.0002
0.0001
0.0001
0.0000
0.0000

Table 8.1 gives estimates 
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Then
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which is the estimated logged age-to-ultimate factor for underwriting year h on the basis of data triangle 
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with
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where the upper left block is given by (8.35) and the lower right block consists of the prior estimate of covariance matrix.  This latter may be obtained by setting 
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Equations (8.58) and (8.59) generate triangles of 
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.  These are set out in Tables 8.3 and 8.4, where the factor shown for development year j applies to the case where this is the latest development year in the data triangle for the accident year concerned, ie h + j = k.

Table 8.3
Estimated logged age-to-ultimate factors
Accident
Estimated logged age-to-ultimate factor at end of development year j=















year
2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


















1978
 0.300
 0.206
 0.151
 0.115
 0.090
 0.071
 0.057
 0.045
 0.036
 0.028
 0.022
 0.016
 0.011
 0.007
 0.003

1979
 0.286
 0.193
 0.153
 0.116
 0.089
 0.069
 0.055
 0.044
 0.034
 0.027
 0.020
 0.015
 0.011
 0.006
 0.003

1980
 0.266
 0.210
 0.153
 0.113
 0.085
 0.068
 0.053
 0.042
 0.034
 0.026
 0.020
 0.015
 0.010
 0.006
 .

1981
 0.307
 0.210
 0.147
 0.107
 0.084
 0.066
 0.052
 0.041
 0.032
 0.025
 0.019
 0.014
 0.009
 .
 .

1982
 0.307
 0.199
 0.138
 0.107
 0.082
 0.063
 0.051
 0.040
 0.032
 0.025
 0.019
 0.013
  .
 .
 .

1983
 0.290
 0.186
 0.139
 0.104
 0.079
 0.064
 0.049
 0.040
 0.032
 0.024
 0.017
  .
  .
 .
 .

1984
 0.270
 0.188
 0.135
 0.100
 0.080
 0.061
 0.049
 0.040
 0.031
 0.023
  .
  .
  .
 .
 .

1985
 0.274
 0.183
 0.130
 0.101
 0.076
 0.061
 0.050
 0.039
 0.029
  .
  .
  .
  .
 .
 .

1986
 0.268
 0.178
 0.133
 0.097
 0.077
 0.062
 0.049
 0.036
  .
  .
  .
  .
  .
 .
 .

1987
 0.261
 0.181
 0.127
 0.099
 0.079
 0.061
 0.046
  .
  .
  .
  .
  .
  .
 .
 .

1988
 0.266
 0.174
 0.130
 0.101
 0.077
 0.058
  .
  .
  .
  .
  .
  .
  .
 .
 .

1989
 0.257
 0.178
 0.133
 0.099
 0.073
  .
  .
  .
  .
  .
  .
  .
  .
 .
 .

1990
 0.263
 0.182
 0.131
 0.094
  .
  .
  .
  .
  .
  .
  .
  .
  .
 .
 .

1991
 0.269
 0.180
 0.124
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
 .
 .

1992
 0.266
 0.171
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
 .
 .

1993
 0.254
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
  .
 .
 .


















Prior
 0.300
 0.206
 0.151
 0.115
 0.090
 0.071
 0.057
 0.045
 0.036
 0.028
 0.022
 0.016
 0.011
 0.007
 0.003


















Table 8.4
Estimated MSEP of logged age-to-ultimate factors
Accident
Estimated logged age-to-ultimate factor at end of development year j =















year
2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


















1978
 0.049
 0.025
 0.014
 0.009
 0.008
 0.005
 0.003
 0.002
 0.001
 0.001
 0.000
 0.000
 0.000
 0.000
 0.000

1979
 0.034
 0.018
 0.013
 0.012
 0.007
 0.004
 0.003
 0.002
 0.001
 0.001
 0.000
 0.000
 0.000
 0.000
 0.000

1980
 0.026
 0.018
 0.018
 0.011
 0.007
 0.004
 0.003
 0.002
 0.001
 0.001
 0.000
 0.000
 0.000
 0.000
 .

1981
 0.028
 0.028
 0.016
 0.010
 0.007
 0.004
 0.002
 0.001
 0.001
 0.001
 0.000
 0.000
 0.000
 .
 .

1982
 0.043
 0.025
 0.015
 0.010
 0.006
 0.004
 0.002
 0.001
 0.001
 0.001
 0.000
 0.000
 .
 .
 .

1983
 0.039
 0.024
 0.016
 0.010
 0.006
 0.003
 0.002
 0.001
 0.001
 0.001
 0.000
 .
 .
 .
 .

1984
 0.038
 0.024
 0.015
 0.009
 0.005
 0.003
 0.002
 0.001
 0.001
 0.000
 .
 .
 .
 .
 .

1985
 0.039
 0.024
 0.014
 0.008
 0.005
 0.004
 0.002
 0.001
 0.001
 .
 .
 .
 .
 .
 .

1986
 0.038
 0.022
 0.013
 0.008
 0.006
 0.003
 0.002
 0.001
 .
 .
 .
 .
 .
 .
 .

1987
 0.035
 0.021
 0.013
 0.009
 0.005
 0.003
 0.002
 .
 .
 .
 .
 .
 .
 .
 .

1988
 0.033
 0.020
 0.014
 0.008
 0.005
 0.003
 .
 .
 .
 .
 .
 .
 .
 .
 .

1989
 0.032
 0.021
 0.013
 0.008
 0.005
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

1990
 0.034
 0.021
 0.013
 0.008
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

1991
 0.033
 0.020
 0.012
  .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

1992
 0.031
 0.019
  .
  .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .

1993
 0.030
  .
  .
  .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .


















Table 8.5
Estimates of ultimate incurred losses
Accident
Ultimate incurred losses as estimated at end of development year j=















year
2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16


$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000


















1978
 27,917
 27,845
 26,673
 29,697
 28,751
 28,183
 26,980
 26,956
 26,665
 26,186
 26,021
 25,835
 25,673
 25,700
 25,730

1979
 23,142
 22,698
 24,073
 24,350
 25,466
 24,034
 22,841
 22,386
 21,599
 21,750
 20,910
 20,279
 20,172
 20,076
 20,044

1980
 32,984
 41,399
 39,150
 38,604
 37,168
 36,491
 35,751
 35,420
 34,733
 32,722
 32,853
 32,828
 32,575
 32,349
  

1981
 55,127
 53,095
 49,965
 47,820
 46,321
 45,273
 44,375
 43,400
 41,775
 41,478
 41,127
 40,911
 40,458
  
  

1982
 56,764
 47,987
 45,720
 44,583
 43,940
 43,080
 42,272
 41,528
 41,202
 41,179
 40,588
 40,723
  
  
  

1983
 48,518
 43,553
 44,748
 43,937
 42,571
 42,373
 39,707
 39,450
 38,592
 38,274
 37,727
  
  
  
  

1984
 55,745
 55,129
 54,525
 57,414
 56,618
 54,486
 54,629
 53,076
 53,099
 52,567
  
  
  
  
  

1985
 48,371
 46,104
 45,944
 45,077
 43,672
 43,547
 42,716
 42,970
 43,635
  
  
  
  
  
  

1986
 46,553
 45,652
 47,439
 49,685
 49,687
 48,408
 47,660
 46,056
  
  
  
  
  
  
  

1987
 35,498
 39,145
 40,299
 44,964
 47,463
 47,499
 46,309
  
  
  
  
  
  
  
  

1988
 35,125
 39,676
 41,637
 41,154
 42,975
 42,857
  
  
  
  
  
  
  
  
  

1989
 42,171
 47,023
 52,708
 50,047
 49,063
  
  
  
  
  
  
  
  
  
  

1990
 43,620
 52,019
 53,831
 54,360
  
  
  
  
  
  
  
  
  
  
  

1991
 44,909
 46,759
 46,841
  
  
  
  
  
  
  
  
  
  
  
  

1992
 49,035
 52,782
  
  
  
  
  
  
  
  
  
  
  
  
  

1993
 44,779
  
  
  
  
  
  
  
  
  
  
  
  
  
  


















Just as in Sections 5 to 7, all distributions of logged age-to-age or age-to-ultimate factors are normal.  Thus, estimates of logged ultimate incurred losses, derived from Tables 7.1, 8.3 and 8.4, are also normal.  This leads to the estimates of (unlogged) ultimate incurred losses in Table 8.5.

Figure 8.1 corresponds to Figure 7.1, giving a plot of the evolving distribution of estimated ultimate incurred losses for accident year 1980.

Figure 8.1
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Appendix A

Derivation of inhomogeneous credibility formula

Section 4.1 required minimisation of:
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by the independence assumptions set out in Section 4.1.
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 denoting the Kronesker delta.
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which is the weighted least squares regression estimate of 
[image: image485.wmf]q

 based on data 
[image: image486.wmf].

h

Y


Also define


[image: image487.wmf](

)

(

)

11

11.

hhhhh

ZMMMM

--

=+=+


(A.19)

Then


[image: image488.wmf]ˆ

T

hh

Z

q



[image: image489.wmf](

)

(

)

1

1

11

1

TT

hhhhhhhh

YVAAVAMM

-

-

--

=+




[image: image490.wmf](

)

1

1

1

T

hhhh

YVAM

-

-

=G+




[image: image491.wmf](

)

1

1,

T

hhhh

YVAZ

-

=G-


(A.20)

where use has been made of the fact that 
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Appendix B

Derivation of homogeneous credibility formula

The estimator (4.8) of 
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 is modified to the following homogeneous form:
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This condition reduces to:
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by (B.1) (4.1a), (4.6) and (4.7).

The argument below largely follows Taylor (1977).

The loss function to be minimised is still (4.9), but now subject to constraints (B.1) and (B.3).  Therefore, define, in place of (4.10),
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where 
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 is a Lagrange multiplier.

By (4.3), (4.6) and (4.7)
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by (B.3).

Substitute (B.5) in (B.4):
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(B.6)

Differentiate with respect to 
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 and set the result to zero:
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(B.7)

This result replaces (A.3) in the inhomogeneous case.  The earlier results (A.6) to (A.8) still hold.  Substitute these in (B.7) to obtain n equations of which the h-th is:
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which replaces (A.11).

Now follow the same procedure as led from (A.11) to (A.17), obtaining:
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Pre-multiply by 
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by (A.14).

Sum over h and apply constraint (B.3):
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[by (A.16)]
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by (A.16).

Solve for 
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:
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Substitute (B.12) in (B.9):
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by (4.15).

Then


[image: image542.wmf]T

hh

Y

a


= 
[image: image543.wmf]11

T

hhhir

YVAMA

--

G



= 
[image: image544.wmf](

)

11

ˆ

TT

hhhhir

AVAMA

q

--

G


[by (4.12)]
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by (4.14).

Thus, by (B.1),
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by (4.17).

So
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