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Summary

The distribution of the total incurred losses of an accident year (or underwriting year) is considered.  Before commencement of the accident year, there is a prior on this quantity.  The distribution may evolve over time according to Bayesian revision which takes account of the accumulation of data with time.

The distribution in question can be made subject to various assumptions and restrictions.  The different forms of these are explored in a sequence of papers that includes the present one.

The present paper examines the situation in which no restrictions are imposed.  The resulting models are referred to as non-parametric.  Credibility methods are applied to work out the evolving distribution in terms of Jewell’s credible distribution (Section 5).

The results are illustrated by application to a very simple numerical example (Section 7).  They are illustrated further by application to a more extensive example involving real data (Section 9).

Keywords:  distribution of incurred losses, credible distribution, credibility theory.

1. Introduction and Background

This paper is written at the request of, and is partly funded by, the Casualty Actuarial Society’s Committee on Theory of Risk.  It is the first of a trio of papers whose purpose is to answer the following question, posed by the Committee:

Assume you know the aggregate loss distribution at policy inception and you have expected patterns of claims reporting, losses emerging and losses paid and other pertinent information, how do you modify the distribution as the policy matures and more information becomes available?  Actuaries have historically dealt with the problem of modifying the expectation conditional on emerged information.  This expands the problem to continuously modifying the whole distribution from inception until it decays to a point.  One might expect that there are at least two separate states that are important.  There is the exposure state.  It is during this period that claims can attach to the policy.  Once this period is over no new claims can attach.  The second state is the discovery or development state.  In this state claims that already attached to the policy can become known and their value can begin developing.  These two states may have to be treated separately.

In general terms, this brief requires the extension of conventional point estimation of incurred losses to their companion distributions.  Specifically, the evolution of this distribution over time is required as the relevant period of origin matures.

Expressed in this way, the problem takes on a natural Bayesian form.  For any particular year of origin (the generic name for an accident year, underwriting year, etc), one begins with a prior distribution of incurred losses which applies in advance of data collection.  As the period of origin develops, loss data accumulate, and may be used for progressive Bayesian revision of the prior.

When the period of origin is fully mature, the amount of incurred losses is known with certainty.  The Bayesian revision of the prior is then a single point distribution.  The present paper addresses the question of how the Bayesian revision of the prior evolves over time from the prior itself to the final degenerate distribution.

This evolution can take two distinct forms. On the one hand, one may impose no restrictions on the posterior distributions arising from the Bayesian revisions.  These posterior distributions will depend on the empirical distributions of certain observations.  Such models are non-parametric.

Alternatively, the posterior distributions may be assumed to come from some defined family.  For example, it may be assumed that the posterior-to-data distribution of incurred losses, as assessed at a particular point of development of the period of origin, is log normal.  Any estimation questions must relate to the parameters which define the distribution within the chosen family.

These are parametric models.  They are, in certain respects, more flexible than non-parametric, but lead to quite different estimation procedures.  

When a period of origin is characterised by a set of parameters in this way, it is possible that those parameters change from one period of origin to the next.  Models with these properties are called dynamic models.  If there is a specific linkage between successive period of origin, they are evolutionary models.

The present paper deals with non-parametric models only, two future papers dealing with the others.

2. Motivational Example

For motivation, an unrealistically simple example is chosen, its data represented in Table 2.1.

Table 2.1
Data for Motivational Example

Accident
Ultimate Number
Paid losses ($m) in development year

Year
Of Claims
0
1
2
3
4

1994
1,011
1.080
4.295
1.838
0.430
0.217

1995
1,235
1.276
4.812
2.629
0.612


1996
1,348
1.534
5.017
2.511



1997
1,329
1.496
5.263




1998
1,501
1.374





For the purpose of the present example it is assumed that:

· The ultimate claim count is known with certainty

· No paid losses occur beyond development year 4

· There is no inflation.

Division of each row of paid losses in Table 2.1 by the associated ultimate number of claims produces the payments per claim incurred (PPCI) (see eg, Taylor, 1999, pages 88-96) displayed in Table 2.2.

Table 2.2
Payments per Claim Incurred

Accident
PPCI ($) in Development Year

Year
0
1
2
3
4

1994

1,068
4,248
1,818
425
215

1995

1,033
3,896
2,129
496


1996

1,138
3,722
1,863



1997

1,126
3,960




1998

915





Let cell (i,j) represent development year j of accident year i, and let X(i,j)  denote the PPCI in respect of that cell.

Assume that, prior to the collection of any data, 

X(i,j)  ~ Gamma
(2.1)

with

E X(i,j)  = 
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(2.2)

V X(i,j)  = 
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2(j),
(2.3)

with
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(j) and 
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2(j) independent of i.

Suppose that the X(i,j)  form a mutually stochastically independent set and that 
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(j) is a sampling from a hyperdistribution with d.f. Fj(.).    Suppose the 
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(j) are also stochastically independent.  Let x(i,j) denote the realised value of X(i,j)  where this observation has been made.

Consider accident year 1996, for example.  At its commencement, its total incurred losses per claim had the unknown value
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with d.f. G0 * G1 * G2 * G3 * G4, where the star denotes convolution and Gj(.) is the unconditional d.f. of X(i,j)   derived from the gamma distribution in (2.1) and the prior Fj(.).

By the end of 1998, the situation represented in Table 2.2, the observations x(1996,j), j=0,1,2 have been made.  The quantity (2.4) therefore becomes
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(2.4a)

Note that the best estimate of the d.f. of the second summand in (2.4a) is no longer G3*G4 because accident years 1994 and 1995 have provided some data in respect of development years 3 and 4.  It is possible to form the Bayesian revision of this d.f.

This causes G3(x) to be replaced by 

Prob [X(i,3) ( x | {x(k,3), k = 1994, 1995}] for i ( 1996, 

and similarly for G4(.). 

In this way the d.f. of the initial variable (2.4) can be revised year by year, as data accumulates, until finally the experience of that accident year is complete and (2.4) is replaced by the known quantity (ie single point distribution).
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(2.4b)

The remainder of this paper will be concerned with the application of credibility theory, itself a Bayesian theory, to the estimation of the distribution of quantities like
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as they evolve from k = -1 to k = 4, under the convention that
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3. Bayesian Framework

The example of Section 2 is generalised as follows.

Let X(i,j) denote some variable that is indexed by year of origin i and development year j, i ( 0, 0 ( j ( J for fixed J >0.

Let k = i + j.  If the X(i,j) are set out in a rectangular array with i and j labelling rows and columns respectively, then k labels diagonals.  Each diagonal represents an experience year, ie the calendar period containing year of origin k, as well as development year 1 of year of origin k-1, etc.

Data accumulate over time by the addition of diagonals.  At the end of year k, the available data set will be 
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The case J = 4, k = 4 defines a triangle such as in Table 2.1.

Let 
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 be an abstract parameter applying to development year j and characterising the distribution of X(i,j).  Suppose that 
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are stochastically independent and, for fixed j, they are iid.
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 indicating conditioning on that variable.

Write
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which represents the average of 
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 over the conditioning parameter, ie the expectation of 
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Once data have accumulated, one may calculate the Bayesian revision of 
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which is an unbiased posterior-to-data estimate of 
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()

j

G

q

g

.

Subsequent sections will be concerned with credibility theory approximations to (3.3).

4. Credibility Theory

4.1 Basic Credibility Theory

Let Y(i,j)  be a variable dependent on 
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 defined in the same way as X(i,j).  The quantities 
[image: image36.wmf]111

(,)|()

Xijj

q

 and 
[image: image37.wmf]222

(,)|()

Yijj

q

 are stochastically independent if 
[image: image38.wmf]1122

(,)(,)

ijij

¹

.  

Suppose one seeks a forecast of 
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, ie relating to experience period k+1, given data X(k).  The most efficient forecast is the Bayesian expectation 
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Credibility theory is a linearised Bayes theory in which this last expectation is approximated by a quantity that is linear in the data.  Specifically, 
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(4.1)

with a and 
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b

 constants, and h,j varying over the set of values such that the X(h,j) form X(k) defined by (3.1).

The forecast 
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 is chosen according to the least squares criterion:
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where here and elsewhere in this paper an expectation operator E without a suffix indicates unconditional expectation.  For example, 
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Now the forecast (4.1) may be simplified a good deal before the details of (4.2) are worked out.  By the symmetry of the X(i,j)  for fixed j, arising from the identity of distribution of the 
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where
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and the 
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 are constants.

The conditions governing independence:

(i)
between the X’s and Y’s; and

(ii)
between the 
[image: image51.wmf]()
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;

cause (4.1a) to simplify further:
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with b constant.  In other words, the only data that have any predictive value for 
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The calculation of 
[image: image55.wmf]*(,1)

Yiki

+-

 becomes a simple exercise when (4.1b) is substituted in (4.2).  The solution, with 
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where
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and the variance and covariance in (4.5) are unconditional.

The numerator and denominator of (4.5) may be simplified further, taking account of the above independence assumptions:


[image: image61.wmf]()

1

()()

[(,)|()]

[(,)|()][(,)|()]

j

jjj

VEXijj

b

VEXijjnEVXijj

q

qq

q

qq

-

=

+

,
(4.9)

where 
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 is the number of observations 
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with
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(4.11)

This last quantity K is sometimes called the time constant.  The final credibility formula is obtained by substitution of (4.6) in (4.1b) and replacement of b by the more conventional symbol z:  
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with 
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 and z (ie b) given by (4.10) and (4.11).  Since X(i,j) and Y(i,j) are identically distributed, 
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This is a representation of the essentials (expressed a little differently) of the original paper on credibility theory (Bühlmann, 1967).  A useful and relatively up-to-date survey of the theory is given by Goovaerts and Hoogstad (1987).

4.2 Credible Distribution

Jewell (1974) considered the case in which 
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for some fixed but arbitrary value of y.  The “observations” which served as inputs to this model were not the raw X(i,j)  but their empirical distribution equivalents.  That is, X(i,j)  was replaced by 
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(4.14)

It will be convenient to abbreviate 
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Application of the credibility theory set out in Section 4.1 then leads to a forecast 
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the linearisation involving the terms 
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This is a Bayesian forecast of the distribution of 
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 and was referred to by Jewell as the credible distribution.  In terms of the example given in Section 2, it amounts to forecasting the distribution of any entry on the next diagonal of the paid loss triangle, conditional on the triangle observed to date.

The basic credibility formula (4.12) may now be re-interpreted within this new context.  First note that, according to the definition of Y(i,j) in (4.13), and making use of (4.8), 
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Note that 
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 is effectively the prior d.f. on the X(i,j)  for the nominated j.

Also, by (4.7) and recalling the replacement of X(i,j)  by 
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by the definition of 
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in (4.13).

By (4.16) and (4.17),
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as was noted more generally at the end of Section 4.1.

This simplifies the credibility formula (4.12) to the following:
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where Y*(i,j) is the forecast discussed in (4.15) and 
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 is the empirical distribution of observations X(i,j)  for the fixed j under consideration:
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An examination of the definition of 
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 is the proportion of observations X(i,j) , for the fixed j, which are less than or equal to y.

The credibility z is still given by (4.10) with z in place of b.  It remains to interpret the time constant K in the present context.  This is done by replacing X(i,j)  by 
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The denominator of (4.11) can be evaluated by the same reasoning as led to (4.17):
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The variance of 
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 in the numerator of (4.11) is a single observation binomial variance, and so the numerator may be written:
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by (4.16).

The final member of (4.22) may be simplified further:
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(4.23)

The quantity K may now be evaluated by means of (4.11) by applying (4.21) as the denominator, and by substituting (4.23) in (4.22) and applying the result as the numerator:
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To summarise, 
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 is forecast by (4.19) with quantities therein defined by (4.20), (4.10) (with b replaced by z) and (4.24).

By assumption, the 
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 are iid for Y(i,j) defined by (4.13) and fixed j, and so the same reasoning may be applied to the forecast of 
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5. The Forecast Cell Distribution

Section 4 gives us the credibility forecast of 
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 for a particular value of y.  The collection of these forecasts for all y is a forecast of the entire distribution 
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Then by (4.19),
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(5.1)

where the dependence of z on j and y has been recognised explicitly:
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It is of interest to observe that 
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 for varying y.  This result may be put in a more general form as follows.

Proposition.  If, for local variations of y, 
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Example.  Consider the case in which 
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where 
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Then (5.3) yields
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If 
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which is independent of y.

In the case 
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This means that the credibility assigned to 
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 in (5.1) declines toward zero in the tails of the prior distribution 
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6.
Combining Cell Forecasts

Returning to the motivational example of Section 2, note that outstanding losses in respect of accident year 1995 relate to just the single cell (1995, 4).  Their distribution is forecast by (5.1) with j=4.

However, outstanding losses in respect of accident year 1996 relate to the two cells with j=3,4 respectively.  The distribution in each of the cells is forecast by (5.1).  The distribution of outstanding losses is forecast by the convolution 
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By (5.1), 
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 will typically be a mixed distribution, since 
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 will be continuous.  Analytical evaluation of convolutions like (6.1) will therefore be awkward in most cases, and best dealt with numerically.

7. Application to Motivational Example

Consider the example set out in Section 2, and specifically outstanding losses in respect of accident year 1997.  This requires the forecast 
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This is given by (6.1):
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with 
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The input parameters required for this evaluation are 
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with 
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 as in Table 7.1.

Table 7.1

Parameters for Gamma Distributions
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mean
s.d.

2

16.0

0.0080

2,000
500

3

11.11

0.0222

500
150

4

4.0
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200
100

Table 7.1 also includes, for each j, the gamma distribution’s mean 
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Suppose further that (compare (5.4))
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(7.3)

Then, by (5.3)
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By (5.2),
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By (5.1),
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where 
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 is the d.f. consisting of three jumps of probability 1/3 each at y=1818, 1863, 2129 respectively.

Similar formulas evaluate 
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Figures 7.1 to 7.3 illustrate the computation of 
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Development year 3
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Development year 4
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Figure 7.4 shows a reasonable correspondence of 
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 with its prior.  This is due to the consistency of 
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 for each j, ie the consistency of the observations in Table 2.2 with their prior means (Table 7.1).

8. Other Additive Forms of Outstanding Losses

Sections 6 and 7 were concerned with the outstanding losses of each accident year; equivalently, the outstanding PPCI.  Thus, for example, (6.1) provides a forecast of 
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The key to this is that the outstanding losses of any accident year are just the summation of a number of the quantities X(i,j)  whose distributions were forecast in Section 5.  The relation between the X(i,j)  and outstanding losses can be generalised without disturbing the essentials of this structure.

Let 
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 denote outstanding losses in respect of accident year i, as at the end of experience year k.  Suppose that
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for some one-one function f.  In this framework, the X(i,j)  may be any quantities satisfying the assumptions made in Section 3.

The forecast distribution of outstanding losses is related to the forecasts of the X(i,j)  through (8.1).

Since
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for 
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 increasing (the ≤ is changed to ≥ on the right side of (8.2) if 
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 is decreasing), the left side of (8.2) is forecast by 
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As an example of (8.1),
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with 
[image: image175.wmf](,)

Cij
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cumulative paid losses to end of development year j in respect of accident year i.

The definitions (8.3) and (8.4) produce a chain ladder analysis (Taylor, 1999, Chapters 2 and 3) with logged age-to-age factors X(i,j) .  The factor 
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 in (8.3) is the age-to-ultimate factor.

In this case, (8.2) becomes
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(8.5)

with 
[image: image178.wmf]*
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 defined by (6.1).

9. A More Realistic Example

The numerical example of Section 7 was invented for motivational purposes.  The present section applies the results of this paper to an example based on real data.

The data, in the form of incremental paid losses are set out in Table 9.1.  They are extracted from an Australian Auto Bodily Injury portfolio.

Table 9.2 displays the logged age-to-age factors X(i,j).  It also displays the sample mean and standard deviation of these quantities for each j.  Table 9.2 appears as Table 7.2 in Taylor (1999) as part of a stochastic chain ladder analysis attributed to Hertig (1985).

For this example, it is assumed that each 
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 given in Table 9.3, and 
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Table 9.1
Incurred Losses



Period
Incurred losses to end of development year n=


















of origin




















0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17


$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000
$000





















1978
9,268
18,263
20,182
22,383
22,782
26,348
26,172
26,184
25,455
25,740
25,711
25,452
25,460
25,422
25,386
25,520
25,646
25,469

1979
9,848
16,123
17,099
18,544
20,534
21,554
23,219
22,381
21,584
21,408
20,857
21,163
20,482
19,971
19,958
19,947
19,991


1980
13,990
22,484
24,950
33,255
33,295
34,308
34,022
34,023
33,842
33,933
33,570
31,881
32,203
32,345
32,250
32,168



1981
16,550
28,056
39,995
42,459
42,797
42,755
42,435
42,302
42,095
41,606
40,440
40,432
40,326
40,337
40,096




1982
11,100
31,620
40,852
38,831
39,516
39,870
40,358
40,355
40,116
39,888
39,898
40,147
39,827
40,200





1983
15,677
33,074
35,592
35,721
38,652
39,418
39,223
39,696
37,769
37,894
37,369
37,345
37,075






1984
20,375
33,555
41,756
45,125
47,284
51,710
52,147
51,187
51,950
50,967
51,461
51,382







1985
9,800
24,663
36,061
37,927
40,042
40,562
40,362
40,884
40,597
41,304
42,378








1986
11,380
26,843
34,931
37,805
41,277
44,901
45,867
45,404
45,347
44,383









1987
10,226
20,511
26,882
32,326
35,257
40,557
43,753
44,609
44,196










1988
8,170
18,567
26,472
33,002
36,321
37,047
39,675
40,398











1989
10,433
19,484
32,103
38,936
45,851
45,133
45,501












1990
9,661
23,808
32,966
42,907
46,930
49,300













1991
14,275
25,551
33,754
38,674
41,132














1992
13,245
29,206
36,987
44,075















1993
14,711
27,082
34,230
















1994
12,476
23,126

















1995
9,715






































Table 9.2
Logged incurred loss age to age factors
Period
Logged age to age factor from development year n to n+1

















of origin
development year n=


















0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16




















1978
0.678
0.100
0.104
0.018
0.145
-0.007
0.000
-0.028
0.011
-0.001
-0.010
0.000
-0.001
-0.001
0.005
0.005
-0.007

1979
0.493
0.059
0.081
0.102
0.048
0.074
-0.037
-0.036
-0.008
-0.026
0.015
-0.033
-0.025
-0.001
-0.001
0.002


1980
0.474
0.104
0.287
0.001
0.030
-0.008
0.000
-0.005
0.003
-0.011
-0.052
0.010
0.004
-0.003
-0.003



1981
0.528
0.355
0.060
0.008
-0.001
-0.008
-0.003
-0.005
-0.012
-0.028
-0.000
-0.003
0.000
-0.006




1982
1.047
0.256
-0.051
0.017
0.009
0.012
-0.000
-0.006
-0.006
0.000
0.006
-0.008
0.009





1983
0.747
0.073
0.004
0.079
0.020
-0.005
0.012
-0.050
0.003
-0.014
-0.001
-0.007






1984
0.499
0.219
0.078
0.047
0.089
0.008
-0.019
0.015
-0.019
0.010
-0.002







1985
0.923
0.380
0.050
0.054
0.013
-0.005
0.013
-0.007
0.017
0.026








1986
0.858
0.263
0.079
0.088
0.084
0.021
-0.010
-0.001
-0.022









1987
0.696
0.270
0.184
0.087
0.140
0.076
0.019
-0.009










1988
0.821
0.355
0.220
0.096
0.020
0.069
0.018











1989
0.625
0.499
0.193
0.163
-0.016
0.008












1990
0.902
0.325
0.264
0.090
0.049













1991
0.582
0.278
0.136
0.062














1992
0.791
0.236
0.175















1993
0.610
0.234
















1994
0.617




































Average
0.699
0.250
0.124
0.065
0.049
0.020
-0.001
-0.013
-0.004
-0.006
-0.006
-0.007
-0.003
-0.003
0.001
0.004
-0.007




















Standard


















deviation
0.169
0.121
0.095
0.045
0.052
0.033
0.017
0.019
0.013
0.018
0.021
0.014
0.013
0.002
0.004
0.002


Table 9.3
Parameters of prior distributions

j
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1

0.60
0.152

2

0.20
0.122

3

0.10
0.097

4

0.05
0.078

5

0.03
0.062

6

0.02
0.050

7

0.00


and later



Table 9.3 also displays values of 
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, calculated from (9.1), for comparison with the sample values in Table 9.2.

Finally, it is assumed that
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(9.2)

so that (5.3) yields
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While Table 9.2 displays the full data triangle of dimension 17, the example examines estimates of the form (5.1) as the dimension k + 1 of the triangle grows from 1 to 17.  By (5.2) and (9.3),
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for given k.

Now restore the full notation 
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 for (5.1).  This will yield forecast distributions for 
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With this understanding, (6.1) is applied to yield
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The corresponding prior is
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where 
[image: image199.wmf](

)

2

;,

ms

F

g

 denotes the normal d.f. with mean 
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 and variance 
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.

Result (9.5) gives the d.f. of the logged age-to-ultimate factor that is applied to incurred losses at end of development year j.

Let 
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 denote incurred losses in respect of underwriting year i, as measured at end of experience year k (ie development year k – i).  Then estimated ultimate incurred losses are given by 
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for logged age-to-ultimate factor f.

Then
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Note that, by (9.4), the credibility factors involved in 
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which do not depend on the size of the data triangle.

The quantity (9.8) is the forecast distribution of ultimate incurred losses for underwriting year, based on data up to and including experience year k.  By (9.6), it compares with a prior 
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Note that this is the prior conditional on actual losses incurred to the end of development year k – i.  Specifically, it is not the original prior for the underwriting year, ie at end of development year 0, which is 
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Figures 9.1 to 9.5 display the forecast d.f. in (9.8) and the corresponding prior (9.10) for underwriting year 1980 (i = 2) at the various points of development, corresponding to k = 1, 2, 4, 9, 16 ie 1980, 1981, 1983, 1988, 1995.

Figure 9.1
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Figure 9.2
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Figure 9.3
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Figure 9.4
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Figure 9.5
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The vertical bar in each plot represents incurred losses to date 
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Observations to be made on the plots are:

· The forecast (credible) distribution tends to converge to the prior with increasing development year, due to the reducing number of distributions in convolution (9.5) as j increases.

· The centre (specifically the median) follows the vertical bar for 
[image: image218.wmf]7

j

³

 (since then 
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m

=

).

· The forecast distribution loses smoothness at the highest development years, where it is based on only a handful of data points.
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