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Semantics: Data Mining vs Predictive Modeling

e Data Mining
— KDD: Knowledge Discovery in Databases
— EDA: Exploratory Data Analysis
— Open-ended
— “cast the net wide”
— “Let the data speak for itself”

e Predictive Modeling
— Build a model tailored to achieve a pre-specified goal

— Build on:
e Results of data mining
e Domain expertise! (actuarial & insurance knowledge)

Actuarial science needs data mining...
... but data mining also needs actuarial science
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Some Definitions

e Raw Variables
— Variables available in the data

e Features
— Variables constructed from the Raw variables

e Target Variable Y

— What we are trying to predict.
e Profitability (loss ratio, LTV), Retention, ...

e Predictive Variables X1 Xo, X3
— “Covariates” used to make predictions.
e Policy Age, Credit, #vehicles....

e Predictive Model Y = f(X{, X5, X))
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Casting the net wide

e Internal Data Sources
— Policy Administration Systems
— Claim Administration Systems
— Stat Records
— Billing Systems, Agency Systems, Loss Control data

e External Data Sources
— Demographic data
— Credit & Financial Information
— MVR, Accident records . . ..

e Create 100s of predictive variables from the above data sources

e Feature Selection: From the 100s of variables, pick the best
combination of variables that explains the business best
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Reason for Feature Selection: Curse of Dimensionality

e Using too many features reduces predictive performance

Training
Data

Data

. f[ Validation

Humber Of Variables in Model ¥
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Feature Selection : Things to Ponder

e A Highly Predictive Variable
— May not translate into a useful variable in a multivariate model

e A useless variable
— Can become very useful when used with other variables

e Two highly correlated variables
— May bring complementary qualities to a model
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Feature Selection

e Feature Selection problem is actually a model selection problem
— NP-hard problem (Cannot be solved in polynomial time O(n°) )

e Unifying theoretical framework is thus lacking

e Example: Selecting the best model from just 20 Variables

— Number of models to consider: 20+(20*19/2) +(20*19*18/6)+ ...
e More than 1 Million variable combinations to choose from
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Objectives of Feature Selection Methods

e Improve understanding of underlying business
— Ease of interpretation/modeling

e Improve Efficiency
— Measurement Costs
— Storage Costs
— Computation Costs

e Improve Prediction Performance of the predictors in the model

— Improve goodness of fit

— Reduce the number of variables in model
» Defy the curse of dimensionality
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Feature Selection: Funnel Approach
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Filters

e Filters are methods that rank variables based on usefulhess

e Used as a preprocessing step

e Uses fast algorithms

e Can be independent of Target Variable

e Designhed to improve understanding of underlying
business
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Filters: How to get most out of filters?

e Simplify the target variable

— Use a binary target variable? Examples:
e High/Low Claim propensity
e Zero/non-Zero claims
e High/Low Severity
e High/Low Profitability

e Focus on different subsets of data

— Examples: New Business, Renewal business, Restaurant Class,
Medium size Policies etc.

— Data Sampling?

e Use many different Ranking techniques
— K-S Statistics, Linear Models, Decision Trees, etc.
— Different technigues have different strengths & weaknesses

e Mix In some random number based Placebo Variables
— For validating variable selection methodology
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Filters: Variable Selection Criteria

e A priori Business/Reliability knowledge
e Variable performance in various simple models

e Correlation Analysis
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Filters: Test for Equality of Distribution

e Kolmogorov — Smirnov Two-Sample Test

— Non-parametric test

— Tests if distribution of a variable is same across two samples
Divide data into two samples based on a Binary Target

(Example: NoClaim policies vs. Others)
Compare the distribution of Xs iIn these two samples
Rank the Xs based on K-S test

Focus on features with highest ranks

0

PolicySize

Copyright © 2008 Deloitte Development LLC. All rights reserved. 16



Filters: Test for Equality of Distribution

e Sample Rank of variables that influence “Zero claims”

Rank| VAR KSA
1|PolicysizeA 41.54114767
2|CwgE 29.45908575
3|FinC 25.15868948
4|FinA 18.72773123
5|PolicySizeB 16.65784683
6| CwvgA 16.09490114
7|AgentA 14.53964193
8|ZipD 14.45720589
9|CwgB 14.22495807

10| PolicyYear 11.38747008

ZipA

11.31822673

12]. 10.93840937
13]. 9.590276851
14]. 8.138575461
7.638420449

.. 7.621321237
185|random©6 0.338630276
203 |random?7 0.075358981
217 |random8 0.072322166

e Placebo variables are used to validate the method

Copyright © 2008 Deloitte Development LLC. All rights reserved.

17



Simple Models: Stepwise Regression

Pros

— Ease of use
— Does give some useful insights about the data

Cons
— Variables are picked based on Training data only
— No penalty for picking too many variables

Few tricks
— Try different target variables
— Run it separately for various variable groups

— Include random variables (as X’s) to understand if the method
works for the problem

— Good idea to run Stepwise Regression multiple times, each time
removing the top few variables from the previous run

Copyright © 2008 Deloitte Development LLC. All rights reserved.
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Filters: Stepwise Regression

e Sample Rank of variables that influence “Zero claims”

Step | Variable Entered Variable Removed Partial R-Square
1 | PolSizeA 0.008
2 | PolSizeB 0.007
3 | FinB 0.005
4 | AgentB 0.003
5 PolSizeB
6 | FinA 0.002
15 | random3 0.001
16 | ZipD 0.001

e Placebo variables are used to validate the method
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Simple Models: Decision Trees

Pros
— Ease of use
— Non Parametric
— Not Sensitive to outliers in data
— Great way to explore/visualize the data
— Variables picked based on performance on Test data
— Can apply Penalty for picking too many variables
— Can give insights on variable interactions
Cons
— Does not pick linear relationships easily
— Unstable models in the presence of correlated variables

e Few tricks
— Try different splitting rules (Gini,Entrpoy, Twoing etc)
— Try different cost complexities for pruning the tree
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Filters: Decision Trees

e Sample Variable Importance report from CART

Variable Score
PolSizeA 100.00
PolSizeB 66.34
CvgA 22.67
FinA 15.90
FinC 5.67
random3 0.03
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Data Visualization

Visualization is important
- to take care of non-linear relationship with target
- Example: add Log(X), X2 or other polynomial terms
- to take care of extreme values
- to take care of missing values
- to create indicator variables
- to take care of correlation with other variables
- to identify interaction terms
Useful Tools
- Profile Plots, Scatter Plots

- Analysis in MARS
- Correlation & Principal Component Analysis
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Data Visualization: Non linear relationships
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Consider adding a squared term for variable polSizeE
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Data Visualization: Indicator Variables
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Consider creating indicator variables for finA=5 and for finA=6
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Data Visualization: Correlations

Correlation Matrix
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Consider constructing Principal Components for highly correlated variables
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Wrappers

e Evaluate subset of variables based on predictive power
— Focus is on Variable Selection

e Independent of the statistical techniques used in modeling
— Try Multiple Learning Techniques

e Can also be embedded into the modeling process

e Can be Computer intensive
— Need to start with manageable number of variables

Copyright © 2008 Deloitte Development LLC. All rights reserved.
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Wrappers: Machine Learning Techniques

Linear Models with Cross Validation
- Data is randomly divided in to K groups
- Score one group based on model fitted from other K-1 groups
- Repeat this K times, once for each group

- Variables are chosen based on performance of model on test

Neural Networks
- Non-Linear statistical modeling tool
- A good tool to understand variable importance
- Built in Train-Test Concept
- Variable importance is one of the outputs from the model
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Wrappers: Machine Learning Techniques . . .

Boosted Decision Trees
- Many trees based on different error weighting schemes
- harder to classify points are given a boost
- Majority vote over a number of decision trees
- Produces very stable results
- Available in CART and ROOT packages

RuleFit or (M) Rule Based Ensembles
- Combines Regression and Classification models
Y =a, + a;f;(X)+ af,(X)+...+ ayfy(X)
- Easy to explain
- Available in R and ROOT
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Wrappers: Variable Selection Criteria

1. Performance

2. Consistency between Train and Test

TMVA overtraining check for classifier: RuleFit

TMVA
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olmogorov-Smirnov test: signal (background) probability = 0.695 (0.628)

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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Putting It All Together
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Feature Selection: Conclusion

e There i1s no perfect algorithm for Feature Selection problem
e Keep it Simple — Principle of Parsimony

e Visualizing the data is very important

 Embed Validation into your methodology

e Work with subsets of data for additional insights

Copyright © 2008 Deloitte Development LLC. All rights reserved.
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