

COSIS Seminar October 5, 2004 Presented by: Serhat Guven

Agenda

- Background
- Definition
- Rationale
- Techniques
- Conclusion

- Background
- Definition
- Rationale
- Techniques
- Conclusion

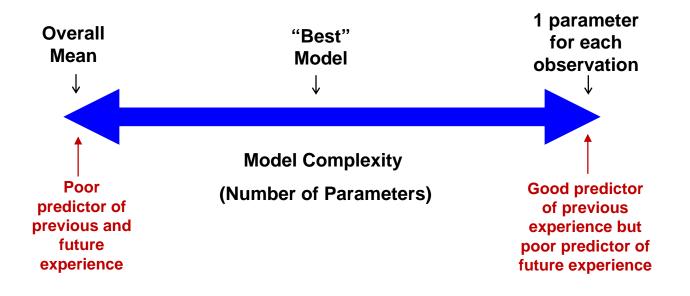
Special Features of P&C Insurance

- Low frequency
- Skewed loss distributions
- Often large coefficients of variation
- No natural categories need continuous estimate of risk rates
- Predictive Models used must recognize these features

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Goal of a Predictive Model

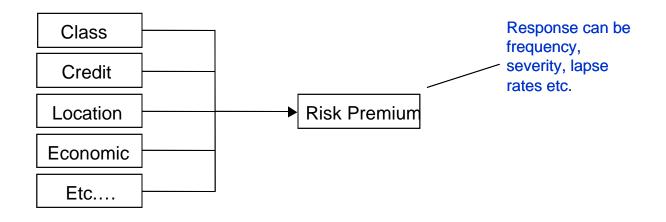
 To produce a sensible model that explains recent historical experience and is likely to be predictive of future experience.



- Background
- Definition
- Rationale
- Techniques
- Conclusion

Goal of a Predictive Model

 To predict a response variable using a series of explanatory variables (or rating factors).

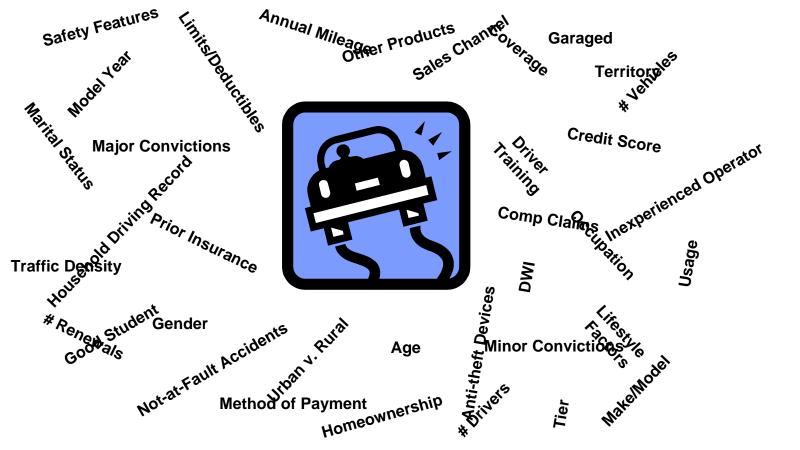


 Larger data storage capabilities allow for a greater number of rating and underwriting variables to be tracked and analyzed.

- Background
- Definition
- Rational
- Techniques
- Conclusion

Multitude of Factors

Many factors have been found to be predictive of frequency and/or loss severity. Here are a few for auto...



Many of these have a significant number of levels.

- Definition
- Rationale
- Techniques
- Conclusion

Multitude of Factors

- Advanced techniques and technology enable the analyst to look at more explanatory variables than previously imagined.
- There still are limitations associated with multivariate approaches.
 - Low volumes of data across dimensions
 - Variables with a large number of rating levels
 - Amount of Insurance
 - Postcode
 - Age
 - Highly collinear variables
- Incorporate Dimension Reduction techniques into the multivariate solution.

- Background
- Definition
- Rational
- Techniques
- Conclusion

What is Dimension Reduction

Definition

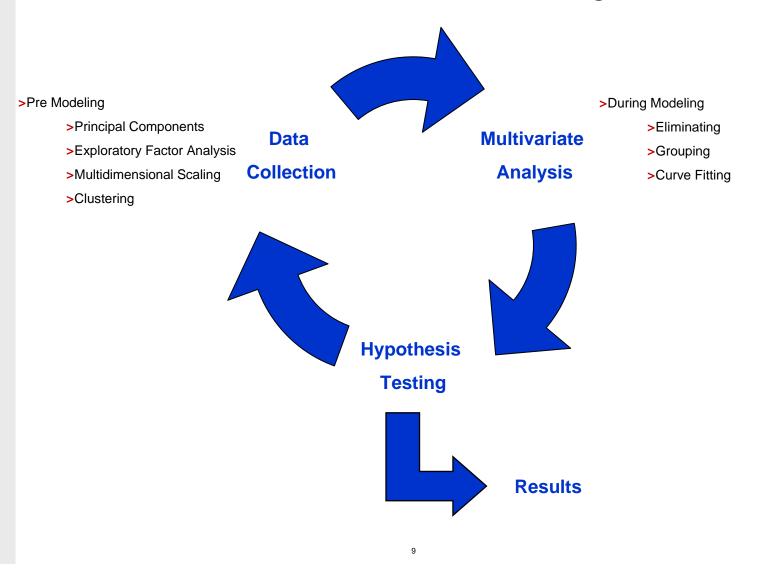
- Reducing the dimensionality of a data set by extracting a number of underlying factors, dimensions, clusters, etc., that can account for the variability in the data set.

Given a table of data:

- Columns represent both the dimensions and facts of the data.
- Rows represent the observation.
- Dimension Reduction focuses on reducing both the number of columns (associations among variables) and the number of rows (associations among observations).

What is Dimension Reduction

Dimension Reduction in the Modeling Process:



- Background
- Definition
- Rationale
- Techniques
- Conclusion

Rationale for Dimension Reduction

- Data Storage
 - Advances in warehousing has led to large quantities of data to process.
- Ease of Interpretation
 - Difficulty in Visualizing an n-dimensional rating structure space.
- Collinearity
 - Some degree of redundancy or overlap among rating variables (e.g. Multi Car discounts and # of Vehicles on Policy).
 - Causes a loss in explanatory power.
 - Makes interpretation more difficult.
 - Requires more data to disentangle the individual effects of each variable.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Rationale for Dimension Reduction

Curse of Dimensionality

- Cartesian product of the number of rating levels grows exponentially with the inclusion of each rating level.
- Exposure distribution is not large enough to cover the entire space.

Principle of Parsimony

- When two models have the same degree of explanatory power then the simpler model should be selected.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Dimension Reduction Techniques

Association among Variables

- Selection
 - Elimination
 - Grouping
 - Stepwise Regression
 - Backward Elimination
 - Forward Selection
- Transformation
 - Curve Fitting
 - Principle Components
 - Factor Analysis (including Confirmatory Factor Analysis)

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Dimension Reduction Techniques

- Association among Observations
 - Multidimensional Scaling
 - Clustering
- Forced Dimension Reduction

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Data Description

Туре	Descriptions				
Dimensions	Sex	Duration			
	Policyholder Age	Garaged			
	Rating Area	Installment Indicator			
	Vehicle Age	Use			
	Vehicle Group	Non standard Indicator			
	Driver Restrictions	Major Convictions			
	NCD	Minor Convictions			
	Protected	MTA Indicator			
	Experience	Time			
Facts	Exposures				
	Claims				
	Losses				

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Association Among Variables: Selection

- Elimination
- Excluding factors entirely is the easiest and most straight-forward way to simplify a model.
- Things to look for:
 - Parameter estimates
 - All parameter estimates are small.
 - All parameter estimates are within two standard errors of zero (i.e., the standard error percentages are all > 50%).
 - Sensible Patterns.
 - Consistency Over Time
 - Models with and without the factor are not significantly different.
 - Chi Square Tests

- Background
- Definition
- Rationale

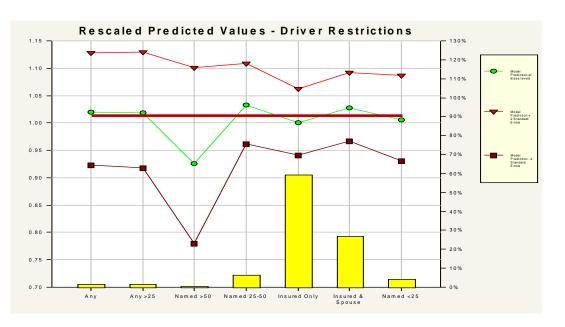
• Techniques

• Conclusion

Elimination Example

Parameter estimates

			Standard		
		Standard	Error	Weight	
Name	Value	Error	(%)	(%)	Exp(Value)
Driver Restrictions (Any)	0.0198	0.0424	214.3%	1.6%	1.0200
Driver Restrictions (Any >25)	0.0184	0.0440	238.9%	1.4%	1.0186
Driver Restrictions (Named >50)	(0.0768)	0.0816	-106.3%	0.4%	0.9261
Driver Restrictions (Named 25-50)	0.0323	0.0222	68.7%	6.3%	1.0328
Driver Restrictions (Insured Only)				59.3%	
Driver Restrictions (Insured & Spouse)	0.0270	0.0129	47.8%	27.0%	1.0274
Driver Restrictions (Named <25)	0.0056	0.0276	489.4%	4.1%	1.0056

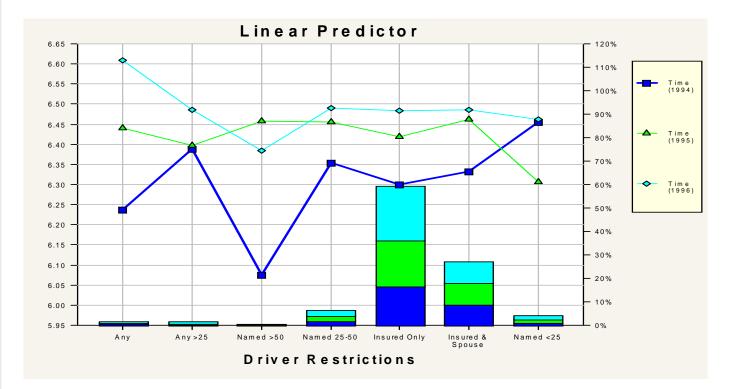


Lowest standard error % is 48%

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Elimination Example

Consistency over time



- Background
- Definition
- Rationale
- Techniques
- Conclusion

Elimination Example

Models with and without the factor are not significantly different.

Model	With	Without
Deviance	8,906.4414	8,909.6226
Degrees of Freedom	18,469	18,475
Scale Parameter	0.4822	0.4823
Chi Square Test		78.6%

- Increase in deviance is due to a decrease in the number of parameters.
- H₀: The two models under consideration are not significantly different.

_	_									
	R	2	cl		n	r	\cap	11	n	d
	-	a		2	9		0	u		u

- Definition
- Rationale
- Techniques
- Conclusion

Association Among Variables: Selection

Grouping

- While a factor might be significant, it may be possible to band certain levels within a factor to create a more parsimonious model.
- Things to look for:
 - Parameter estimates
 - Parameter estimates that are not significantly different from each other.
 - Levels where there is low exposure.
 - Sensible Patterns.
 - Consistency Over Time
 - Models with and without the factor are not significantly different.
 - Chi Square Tests

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Grouping Example

 Standard error of the parameter differences help identify potential groupings

							,					
	Policyholder Age (lt 17)	Policyholder Age (17)	Policyholder Age (18)	Policyholder Age (19)	Policyholder Age (20)	Policyholder Age (21)	Policyholder Age (22)	Policyholder Age (23)	Policyholder Age (24)	Policyholder Age (25)	Policyholder Age (26)	Policyholder Age (27)
Policyholder Age (lt 17)												
Policyholder Age (17)	92.3											
Policyholder Age (18)	87.3	308.0										
Policyholder Age (19)	110.0	132.4	91.0									
Policyholder Age (20)	94.1	1,414.6	277.0	154.2								
Policyholder Age (21)	97.7	333.2	153.0	196.1	468.5							
Policyholder Age (22)	97.7	357.7	162.6	200.2	512.2	10,113.7						
Policyholder Age (23)	104.4	130.8	79.6	498.2	158.5	205.1	213.3					
Policyholder Age (24)	90.2	912.9	378.7	101.2	530.3	188.0	204.9	68.4				
Policyholder Age (25)	108.2	104.4	67.8	4,227.8	123.3	141.4	148.0	307.4	56.6			
Policyholder Age (26)	101.6	161.6	90.9	293.4	203.2	322.2	330.4	388.3	82.2	161.7		
Policyholder Age (27)	147.1	41.4	31.8	77.9	46.1	41.5	44.2	35.7	23.5	38.5	29.4	
Policyholder Age (28)	134.7	48.0	35.9	103.7	54.0	49.4	52.7	44.1	26.4	49.4	35.3	132.5
Policyholder Age (29)	129.7	52.4	38.7	123.8	59.1	55.0	58.7	51.2	28.9	59.2	40.6	91.8
Policyholder Age (30)	147.2	41.6	32.0	78.2	46.3	41.8	44.6	36.6	24.1	39.8	30.7	38,134.8
Policyholder Age (31-32)	132.0	48.8	36.0	110.9	55.2	50.3	54.0	43.8	25.6	49.8	34.7	97.8
Policyholder Age (33-35)	142.4	41.8	31.5	82.5	46.9	41.7	44.8	34.2	22.0	37.1	27.6	345.9
Policyholder Age (36-40)	147.6	39.1	29.6	73.9	43.9	38.6	41.5	30.7	20.5	33.0	25.1	2,196.5
Policyholder Age (41-45)	156.5	36.5	28.1	64.9	40.7	35.7	38.3	28.8	19.9	30.5	24.0	192.3
Policyholder Age (46-50)	135.3	47.6	35.7	102.1	53.6	49.2	52.5	44.2	26.6	49.9	36.1	145.0
Policyholder Age (51-55)	147.1	42.0	32.5	79.0	46.8	42.6	45.2	37.9	24.9	41.6	32.3	43,108.9
Policyholder Age (56-60)	114.0	85.6	59.8	481.2	98.7	105.4	110.3	150.3	52.2	254.0	106.9	55.1
Policyholder Age (61-65)	138.1	55.1	43.3	111.9	60.8	59.7	62.1	63.5	38.6	73.0	55.0	288.4
Policyholder Age (66-70)	652.1	23.6	20.7	30.6	25.1	23.2	24.0	21.6	18.3	22.3	20.4	31.9
Policyholder Age (71-75)	127.5	95.4	75.5	243.1	103.9	114.7	116.3	153.2	78.0	194.2	129.6	191.3
Policyholder Age (75-80)	431.4	25.4	22.1	33.8	27.1	25.2	26.0	23.5	19.6	24.4	22.2	36.9
Policyholder Age (81+)	1,822.1	19.7	17.5	24.6	20.8	19.3	19.9	17.8	15.6	18.3	17.0	23.8

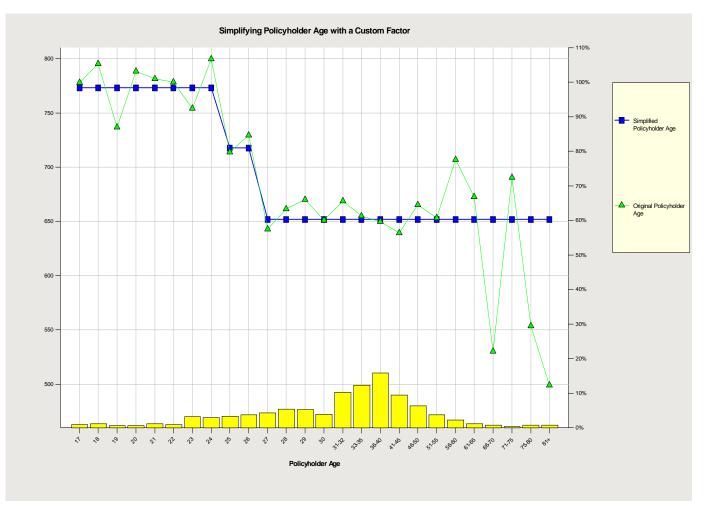
- Background
- Definition
- Rationale

Techniques

Conclusion

Grouping Example

 Simplify trends in rating factors in order to remove random noise, by grouping factor levels...



- Background
- Definition
- Rationale
- Techniques
- Conclusion

Grouping Example

Models with and without the factor are not significantly different.

Model	Ungrouped	Grouped
Deviance	8,906.4414	8,934.1620
Degrees of Freedom	18,469	18,493
Scale Parameter	0.4822	0.4823
Chi Square Test		27.2%

- Increase in deviance is due to a decrease in the number of parameters.
- H₀: The two models under consideration are not significantly different.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Association Among Variables: Selection

Stepwise Regression: Backward Elimination

Build a Model with all variables and delete based on prespecified criteria regarding improvement in model fit:

Model	Variables	Deviance	Degrees of Freedom	Chi Squared Compare to Base
Base	All	8,906.44	18,469	
1	All excl Gender	8,907.09	18,471	65.2%
2	All excl Policyholder Age	8,959.74	18,495	0.1%
3	All excl Rating Area	8,951.61	18,484	0.0%
4	All excl Vehicle Age	10,824.07	18,489	0.0%
17	All excl MTA Indicator	8,906.45	18,470	92.2%
18	All excl Time	8,982.06	18,471	0.0%

- Remove factor that performed the worst on the Chi Square test. (MTA Indicator)
- Iterate process with the new base model until no further factors indicated removal.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Association Among Variables: Selection

Stepwise Regression: Forward Selection

Build a Model with no factors and add based on prespecified criteria regarding improvement in model fit:

Model	Variables	Deviance	Degrees of Freedom	Chi Squared Compare to Base
Base	Mean	12,380.23	18,596	
1	Mean + Gender	12,377.02	18,594	20.1%
2	Mean + Policyholder Age	12,214.88	18,570	0.0%
3	Mean + Rating Area	12,365.50	18,581	47.1%
4	Mean + Vehicle Age	9,997.75	18,576	0.0%
17	Mean + MTA Indicator	12,370.30	18,595	0.2%
18	Mean + Time	12,371.45	18,594	0.1%

- Add the factor that performed the best on the Chi Square test. (Policyholder Age)
- Iterate process with the new base model until no further factors indicated removal.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Association Among Variables: Selection

Drawbacks to Stepwise Regression:

- Tendency to Overfit the data.
- Short cuts the exploratory process through which the researcher gains an intuitive feel for the data.
- Problems in the presence of collinearity.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Association Among Variables: Transformation

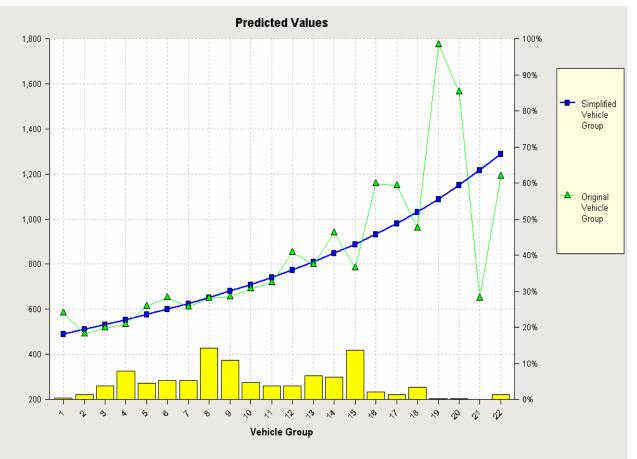
Curve Fitting

- While a factor might be significant, it may be desirable to smooth adjacent levels to create a more parsimonious model.
- Things to look for:
 - Factors which have a natural x-axis that can be converted to a continuous scale.
 - Factors with a sufficient number of levels to justify curve fitting.
 - Factors with a definite trend or progression.
 - Models with and without the factor are not significantly different.
 - Chi Square Tests

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Modeling-Fitting Curves (Variates)

 Simplify trends in rating factors in order to remove random noise, by fitting an nth degree curve...



- Background
- Definition
- Rationale
- Techniques
- Conclusion

Modeling-Fitting Curves (Variates)

Additional Curve Fitting Options

- Degree of the Polynomial
- Multiple curves across the same variable
- Splines

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Association Among Variables: Transformation

- Principle Components Analysis
- Goal: Identify a smaller number of dimensions as a linear combination of the original dimensions that will account for a sufficient amount of information exhibited in the original set.
- Potential Applications
 - Helpful in eliminating collinearity among rating variables
 - Creation of indices from multiple dimensions
 - Identifying patterns of Association among variables
- Linearly combining existing rating factors into a single rating factor.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Principle Components Analysis

Given an n x p data matrix where n represents the number of observations and p represents the number of rating factors:

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{bmatrix}$$

Create a standardized matrix X_s such that:

$$x_{s_{i,j}} = \frac{x_{i,j} - \overline{X}_j}{S_j}$$

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Principle Components Analysis

Let Z be an n x c matrix of Principle Components where

$$Z = X_s u$$

Such that u is a p x c eigenvector matrix.

- The idea is to find u so that Var (Z) is maximized subject to the constraint that u^Tu = 1
 - This constrained optimization problem is solved with the following equations:

$$Ru = \lambda u$$

- Where R is the correlation matrix of X_s and λ is the eigenvalue

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Principle Components Analysis

Example: PCA performed on the following factors

- Vehicle Age (VA)
- NCD
- Major Convictions (MJ)
- Minor Convictions (MN)
- First Principle Component
 - Z₁ = 0.0687 VA + -0.7036 NCD + 0.7038 MJ + -0.0699 MN
 - Z₁ explains about half of the underlying variance in the underlying factors
- Potential Applications
 - Insurance Scores
 - Vehicle Symboling

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Association Among Variables: Transformation

- **Exploratory Factor Analysis**
- Goal: Identify underlying source of variance common to two or more variables.
 - Common Factors are unobservable characteristics common to two or more variables.
 - Specific Factors are mutually uncorrelated characteristics specific to only one variable.
- Potential applications
 - Identifying unobservable characteristics.
 - Removing underlying collinearity.
- The idea is to decompose rating variables in linear combinations of latent traits.
 - Factor scores are the location of the original observations in the reduced factor space.

Background

- Definition
- Rationale
- Techniques
- Conclusion

Exploratory Factor Analysis

Given the n x p standardized matrix defined earlier then the common factor model is defined as follows:

$$X_{s} = \Xi \Lambda_{c}^{T} + \Delta$$

Such that

$$\begin{split} \Xi &= \begin{bmatrix} \xi_1 & \xi_2 & \cdots & \xi_c \end{bmatrix} \\ \Delta &= \begin{bmatrix} \delta_1 & \delta_2 & \cdots & \delta_p \end{bmatrix} \\ \Lambda_c &= \begin{bmatrix} \lambda_{1,1} & \lambda_{1,2} & \cdots & \lambda_{1,c} \\ \lambda_{2,1} & \lambda_{2,2} & \cdots & \lambda_{2,c} \\ \vdots & \vdots & & \vdots \\ \lambda_{p,1} & \lambda_{p,2} & \cdots & \lambda_{p,c} \end{bmatrix} \end{split}$$

Where ξ_j is the jth factor that is common to all observed variables, $\lambda_{i,j}$ is the coefficient and δ_i is the ith factor specific to the ith rating variable.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Exploratory Factor Analysis

Determine the factor scores for use in the larger multidimensional model:

$$\Xi = X_s R^{-1} \Lambda_c$$

Where R is the correlation matrix of X_s

- Comparing to Principal Components:
 - Principal components assumes that all the variability should be used in the resulting analysis
 - Exploratory Factor analysis assumes that only the variability associated with the common factors should be used in the resulting analysis

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Exploratory Factor Analysis

- Potential Applications
 - Generating new rating variables
 - Simplifying existing rating structures

_	_									
	R	2	cl		n	r	\cap	11	n	d
	-	a		2	9		0	u		u

- Definition
- Rationale
- Techniques
- Conclusion

Association Among Observations

Multidimensional Scaling

- Goal: Detect meaningful underlying dimensions that allow one to explain observed similarities between objects.
- Approach is to arrange objects in a space with a particular number of dimensions so as to produce the observed distances.
- Types
 - Metric
 - Nonmetric
 - Multidimensional Analysis of Preference
- Potential Applications: Perceptual Mappings
 - Identify and model customers premium expectations.
 - Map the importance and influence of various insurance operations based on customer surveys.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Association Among Observations

Clustering

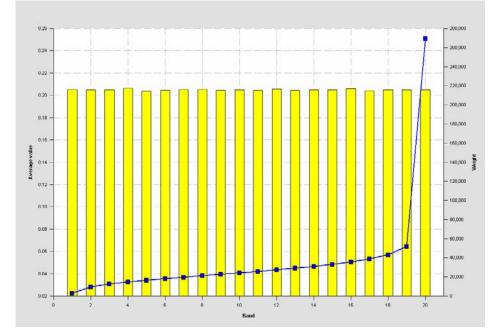
🗘 Goal:

- Minimize within-group heterogeneity.
- Maximize cross-group heterogeneity.
- Produce groupings which are predictive in future.
- Basic Methods
 - Quantiles
 - Equal Weight
 - Similarity Methods
 - K-means Clustering

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Clustering

- Quantiles
 - Create groups with equal numbers of observations.
- Equal Weight
 - Create groups which have an equal amount of weight.



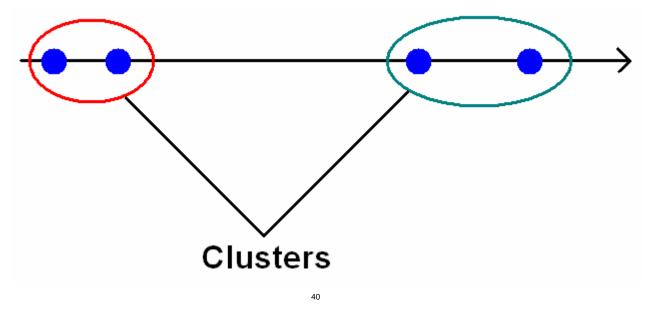
- Background
- Definition
- Rationale
- Techniques
- Conclusion

Clustering

Similarity Methods

General Approach

- Rank the data set by the statistic you wish to cluster.
- Decide on which pair of records are the 'most similar.'
- Group these records.
- Repeat until left with the desired number of groups.



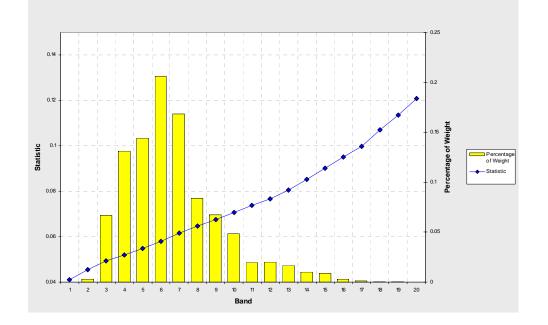
- Background
- Definition
- Rational
- Techniques
- Conclusion

Clustering

Similarity Methods

Average Linkage

- Distance between clusters is the average distance between pairs of observations, one in each cluster.
- Tends to join clusters with small variances.



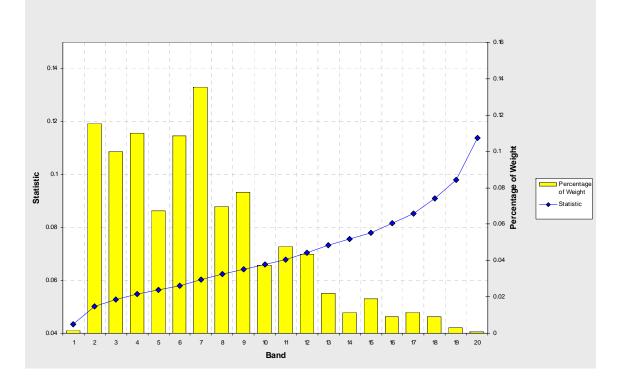
- Background
- Definition
- Rationale
- Techniques
- Conclusion

Clustering

Similarity Methods

Centroid

- Distance between clusters is the difference between the mean values of the clusters squared.



- Background
- Definition
- Rationale
- Techniques
- Conclusion

Clustering

- K-means
 - Rank the observations.
 - Split into k groups e.g. using quantile method.
 - Calculate the mean value of each group.
 - Define group start/end-points as being half-way between adjacent mean values.
 - Reallocate each observation.
 - Repeat until group start and end-points converge.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Forced Dimension Reduction

Regulatory disallows credit {undesirable subsidy}

- Include in modeling of frequency and severity to get most predictive pure premium
- Model rating algorithm without credit variable
- Try to adjust for lack of credit

- Business dimension {desirable subsidy}
 - Model rating algorithm without adjustments as if factor fully included
 - Otherwise, model will try to "correct" for excluded variable

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Conclusion

- How many variables are available?
 - Rating plan vs. available in warehouse.
 - Credit factors.
 - Socio demographic.
- Objective is to identify factors which are predictive
 - Which are best at differentiating risks?
 - Understand all predictive variables before building in any constraints.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Conclusion

- How many levels do we have in our predictive variables?
 - Driver age.
 - Zipcode.
 - Numbers of levels and nature of variable will determine most appropriate measure.
- Objective is to identify underlying signal and represent it in our models.

- Background
- Definition
- Rationale
- Techniques
- Conclusion

Conclusion

- Available factors.
- Identify predictive variables.
- Extract signal from predictive variables.
- Use models to build rating plan.

Questions?