Modeling Lessons From Across the Pond -Insights from Decades of Deregulated Modeling

Duncan Anderson MA FIA Watson Wyatt LLP

Agenda

- External data
- Geographical spatial analysis
- Product features of modeling interest
- Retention modeling / price optimization

Agenda

- External data
 - geodemographic data
 - geophysical data
 - vehicle data
 - banking data
- Geographical spatial analysis
- Product features of modeling interest
- Retention modeling / price optimization

Geodemographic data

- Often designed for selling detergent
- Attaches to post code / zip code therefore easy to use at point of sale
 - can be hidden in a territory definition
- Marketing segment types often not predictive
- Underlying data often more interesting
- Simple measure of urban density often predictive

Example of effect of urban density on EU country #1 homeowners theft frequency

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed strong multivariate effect of urban density

Excludes some covers such as subsidence and flood

Example of urban density Auto, EU country #2 - Theft frequency

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed strong multivariate effect of urban density

Example of urban density Auto, EU country #2 - **Property Damage** frequency

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed multivariate effect of urban density which is significant but weaker than the effect for auto theft claims

Geodemographics can be rather related!

	R1	R2	R3	R4	G1	G2	G3	G4	G5	G6
R1										
R2	11%									
R3	32%	3%								
R4	17%	7%	58%	•						
G1	8%	2%	57%	16%	6					
G2	8%	2%	53%	15%	6 <mark>49</mark> %	6				
G3	7%	3%	44%	149	6 <mark>33</mark> 9	6 33 9	%			
G4	5%	4%	21%	8%	6 <mark>30</mark> %	6 30 °	% 30	0%		
G5	3%	2%	31%	6%	6 <mark>36</mark> %	6 35 °	% 34	1% 3	<mark>1%</mark>	
G6	8%	2%	65%	16%	5 <mark>37</mark> %	6 35°	% 3′	1% 2	9% 3	<mark>4%</mark>
G7	8%	2%	65%	16%	6 <mark>36</mark> %	6 34 9	% 30)% 3	0% 3	4% 71%

Cramer's V for a selection of standard rating factors (R1, ..., R4) and geodemographic factors (G1, ..., G4)

Example of geodemographic factors Homeowners, EU country #3

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed strong multivariate effect of a geodemographic factor related to average life-stage of an area

Example of geodemographic factors Homeowners, EU country #3

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed strong multivariate effect of another geodemographic factor

Example of geodemographic factors Homeowners, EU country #3

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed strong multivariate effect of factor related to average type of building in the area

Agenda

External data

- geodemographic data
- geophysical data
- vehicle data
- banking data
- Geographical spatial analysis
- Product features of modeling interest
- Retention modeling / price optimization

Geophysical data

- Available in many countries
- Particularly helpful for elements of claim for which own claims experience is not credible / predictive, including
 - flood
 - subsidence
 - storm
 - etc
- Norwich Union mapping

- Examples of data available in UK:
 - Flood risk
 - Soil type / subsidence risk
 - Windstorm risk
 - Frost risk
 - Theft risk (police data / geodemographic data)
 - Earthquake risk
 - Average building type (susceptibility to winds etc)

Examples of geophysical data EU country #3 - homeowners

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed strong multivariate effect of a weather related geophysical data item

Examples of geophysical data EU country #3 - homeowners

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed multivariate effect of another weather related geophysical data item

Agenda

External data

- geodemographic data
- geophysical data
- vehicle data
- banking data
- Geographical spatial analysis
- Product features of modeling interest
- Retention modeling / price optimization

Vehicle data

- Links to license/registration plate available in some EU countries, particularly common in UK
- Benefits include
 - faster quotation process
 - accurate factors
 - more factors
- In UK, DVLA also holds personal data which is not disclosed

- Example data includes
 - exact make, model, type
 - engine size
 - power
 - max speed / acceleration
 - weight
 - number of doors
 - color
- Norwich Union Pay-asyou-Drive trial

Agenda

External data

- geodemographic data
- geophysical data
- vehicle data
- banking data
- Geographical spatial analysis
- Product features of modeling interest
- Retention modeling / price optimization

Banking data

- Highly predictive of insurance claims experience
- Generally not used at point of sale in EU
- Many EU banks distribute insurance or own insurance companies
- If data collected with the correct box ticked, can be used for selective marketing

Example of predictive power of credit score (one-way of loss ratio)

Real GLM output cannot be disclosed in handouts

Graph shown in presentation showed strong effect of credit score on insurance claims experience

Banking data

- Credit score predictive, but so are lower level elements such as
 - average balance
 - whether or not in debt
- In one example over 12 banking factors were predictive in a GLM, some with effects of 1.5x or more
- Eg: strong increase in claims when policyholder in arrears on mortgage payments

- suggests fraud element to the effect?

Case study: EU bank

- Distributed insurance products underwritten by a partner insurance company
- Bank could not easily change rates but shared in insurance profit
- Insurance penetration of banking customer base relatively small
- Bank derived profitability score based on banking factors which were not available at point of sale
- Score then used to market insurance selectively to banking customers

Agenda

• External data

- Geographical spatial analysis
- Product features of modeling interest
- Retention modeling / price optimization

UK auto postcode loadings

Comparison of UK auto categorizations Number of districts Company F 404³⁸⁷369³⁵²334³¹⁶299 542 518 495 475 457 Company I

Comparison of UK auto categorizations districts ę Number (Company F 404 387 369 352 334 316 299 Company I

Spatial smoothing

- Blends experience of one region with that of surrounding regions according to distance and credibility
- Credibility and spatial smoothing parameters are trained on actual data

An approach

- More details of this approach available at <u>www.casact.org/coneduc/ratesem/2004/handouts/anderson.pdf</u>
- Standardize for other factors by fitting a GLM (excluding current zones)
- Consider "residual" risk by "region"
- Seek to make this residual risk more predictive
- Then categorize into zones to derive appropriate loadings

Residual risk

Model

$$r_i^* = Z(e_i).r_i + (1 - Z(e_i)) \sum_j e_j.r_j.f(d_{ij}) / \sum_j e_j.f(d_{ij})$$

where

$$r_i^*$$
 = smoothed residual r_i = unsmoothed residual $Z(e_i) = \{ e_i / (e_i + a) \}^m$ e_i = exposure in region i

$$d_{ij} = \{ (x_i - x_j)^2 + (y_i - y_j)^2 \}^{\frac{1}{2}}$$

 $f(d_{ij}) = 1/d_{ij}^{n}$ or $1/(d_{ij}^{n} + b^{n})$ or $exp(-n.d_{ij})$ etc

Example results

Unsmoothed residuals

Smoothed residuals

Predictive power of new zone on unseen data

Zone based on smoothed residuals

Predictive power of new zone on unseen data

Zone based on smoothed residuals

2 S.E from GLM estimate - GLM estimate

Zone based on unsmoothed residuals

Parameters - international consistency (f(d_{ij}) = 1/d_{ij}ⁿ)

	n	e for Z=20%
UK	1.9	146
UK	2.2	152
UK	1.8	78
France	2.0	104
France	1.9	146
Netherlands	1.8	61
South Africa	2.2	106
USA	2.5	127
USA	1.9	106

Different metrics

$$r_i^* = Z(e_i).r_i + (1 - Z(e_i)) \sum_j e_j.r_j.f(d_{ij}) / \sum_j e_j.f(d_{ij})$$

where

$$r_i^*$$
 = smoothed residual r_i = unsmoothed residual $Z(e_i) = \{ e_i / (e_i + a) \}^m$ e_i = exposure in region i

$$d_{ij} = \{ (x_i - x_j)^2 + (y_i - y_j)^2 + (s.q_i - s.q_j)^2 \}^{\frac{1}{2}}$$

 $f(d_{ij}) = 1/d_{ij}^{n}$ or $1/(d_{ij}^{n} + b^{n})$ or $exp(-n.d_{ij})$ etc

Agenda

- External data
- Geographical spatial analysis
- Product features of modeling interest
 - Bonus-Malus
 - Moderator / point of sale algorithms
- Retention modeling / price optimization

Bonus-Malus

- Scale of discounts based on number of years without a claim
- Enshrined into culture of many EU insurance markets
- Used to be mandatory in some countries
 - many EU insurers still scared to deviate from perceived norm
- Scales are of different lengths from one country to another, and have different transition rules
- Policyholder leaving one company will transfer an agreed measure of Bonus-Malus to another

Bonus-Malus -"realistic fictitious" example

Example job

Run 2 Model 3 - All claim types, all factors, N&A - Third party material damage, Numbers

Bonus-Malus

- Discounts generally wrong
- Other factors often moved around to compensate
- Nevertheless
 - discourages claims
 - can often be strongly predictive over and above other factors
 - indirectly picks up some element of risk factors not explained by rating factors
- In general mixed factors based on claim free years and tenure can be rather predictive

Agenda

- External data
- Geographical spatial analysis
- Product features of modeling interest
 - Bonus-Malus
 - Moderator / point of sale algorithms
- Retention modeling / price optimization

Types of rating structures - simple multiplicative (or additive/multiplicative)

	Age	Factor	Group	Factor	Sex	Factor
	17	2.52	1	0.54	Male	1.00
	18	2.05	2	0.65	Female	1.25
	19	1.97	3	0.73		
	20	1.85	4	0.85		
* • • • • • •	21-23	1.75	5	0.92	Area	Factor
\$621.50 x	24-26	1.54	6	0.96	Α	0.95
	27-30	1.42	7	1.00	В	1.00
	31-35	1.20	8	1.08	С	1.09
	36-40	1.00	9	1.19	D	1.15
	41-45	0.93	10	1.26	E	1.18
	46-50	0.84	11	1.36	F	1.27
	50-60	0.76	12	1.43	G	1.36
	60+	0.78	13	1.56	Н	1.44

Types of rating structures - using a simple "moderator"

£621.50 x	Age Factor 17 2.52 18 2.05 19 1.97 20 1.85 21-23 1.75 24-26 1.54 27-30 1.42 31-35 1.20	Group Factor 1 0.54 2 0.65 3 0.73 4 0.85 5 0.92 6 0.96 7 1.00 8 1.08	Sex Fa Male Female Area Fact A 0. B 1. C 1.	1.00 1.25 1.25 00 00		
	36-40 1.00 41-45 0.93 46-50 0.84 50-60 0.76 60+ 0.78	9 1.19 10 1.26 11 1.36 12 1.43 13 1.56	E 1. F 1. G 1. H 1.	18 27 36 44		
	Sub max min	ject to +20% -10%				

Moderator: pros/cons

- Advantages of moderators include:
 - moves everyone to optimal position (subject to acceptable premium increases) more quickly
 - can take into account elasticity for the type of person in question
 - can be less detailed work required regarding underlying parameterisation
 - less work required to parameterise in future
- Disadvantages
 - more onerous system requirements
 - harder to understand rating structure
 - likely to result in different quotes for renewals and new business for an identical risk
 - may not be too popular with some regulators?

Rating structure - point of sale optimization algorithm

Agenda

- External data
- Geographical spatial analysis
- Product features of modeling interest
- Retention modeling / price optimization

Considering the competitive position

Example of competitor analysis

Third party cover

Modeling retention / conversion

- Model
 - normal factors
 - softer factors
 - premium change /competitor factors
- Conversion models require data on failed quotes

Modeling retention / conversion

- Factors
 - normal rating factors
 - endorsement activity
 - other products held
 - payment method
 - discount expectation
 - source
 - claims history
 - tenure
 - change in premium (this time and last)
 - competitiveness of premium

• Data

- need healthy spread of historic rate changes to assess elasticity well
- EU insurers can have more fun:
 - frequent changes
 - randomized price trials
 - generations of rates
- Uses
 - lifetime loadings
 - customer value calculations
 - price optimization

Price optimization / model office scenario testing

What do you optimize?

- Year 1 profit will not consider value of business in the future
- Could seek "a_x" for future profit problematical
- Could calculate PVFP over a decade

but too many wobbly assumptions?

 Or optimize a profit measure subject to a minimum volume

Or optimize volume subject to a minimum profit

Base rate and relativity change

Calibration of a simple min/max moderator

Calibration of a simple min/max moderator

Other ideas

- Dynamic calibration of retention model at point of sale
- Multivariate models of expenses (eg young people amend cover more)

Modeling Lessons From Across the Pond -Insights from Decades of Deregulated Modeling

Duncan Anderson MA FIA Watson Wyatt LLP

