Don't put all your AALs in One Basket

Casualty Actuarial Society RPM Boston, MA

Risk Concentration Pricing for Primary Insurers

By: Tim Wei Cody Webb Victoria Gomez

Calculating Net Cost of Reinsurance

Primary Insurers' Traditional Treatment of NCOR

Flat Load in Base Rate

Catastrophe Model Components – Stochastic Event Module

C Milliman

§ Includes a database of stochastic events

§ Defined by:

q Strength

- q Location
- q Probability of occurrence

Catastrophe Model Components – Hazard Module

§ Generates event information

§ Examples (for Hurricane):

q Central pressureq Radius of maximum windq Translational speed

Catastrophe Model Components – Vulnerability Module

§ Estimates relationship between event parameters and damage to property

§ Calculates:

q Mean damage q Uncertainty around the mean

Catastrophe Model Components – Financial Module

§ Applies insurance contract terms to the modeled damage
§ Translates the physical loss into a financial loss figure
§ Calculate losses incurred to insured, primary insurer, and reinsurer

Catastrophe Model - Output

- § Event Level vs Region/Risk Level
- § By Reinsurance Treaty Layer
- § Probable Maximum Loss Curves

🖿 Milliman

Common Application in Pricing

§ Event-level AALs for projecting loss costs in rate filings

§ Portfolio risk/PML for negotiating reinsurance contracts

§ Inforce portfolio commonly used for the simulation runs

q Often assumes results are fully credible

q However, may be a weakness if the underlying portfolio is limited in size or has systematic biases

§ Model results typically treated as if they were at ultimate q Development assumptions implicit in model validation procedures q Some aspects of loss trends captured by changing exposure attributes

Regulatory Concerns in Concentration Pricing

§ Model Versions and Specifications

- q Primary insurers more regulated than reinsurers
- q Inconsistent versioning/specifications between contract and filing
- q Model reviews may be outside of regulators' area of expertise
- q Reinsurance program subject to change
- q Extreme discontinuities for proposed rates

§ Resulting rates not equitable from market's perspective q Cost of risk transfer depends on other risks in the insurer's portfolio q May be difficult for regulators to justify carriers charging different rates

for the same risk

Primary Insurers' Traditional Treatment of NCOR

Proportional to Gross AAL

Alternative Options for NCOR Allocation

- Proportional Method Based on VaR/TVaR
- Incremental and Co-Measures Methods
- Shapley Value and Covariance Share Methods
- Event-Based Allocation by Reinsurance Layer Method

Concentration Pricing: Actuarial Considerations

- **Cost of Risk Transfer**¹ A rate provides for all costs associated with the transfer of risk.
- Coherence² Desirable properties for allocation method to "make sense".
 - Positive Homogeneity "The risk of a multiple is equal to the multiple of a risk." (applies to perfectly independent risks only)
 - Subadditivity The risk of the sum of individual risks is less than or equal to the sum of the individual risks.
 - Translation Invariance Adding a riskless constant to a risky position does not increase the risk of the position.
 - Monotonicity Measures for less risky positions are smaller than for riskier positions.
- Order Dependence / Renewal Additivity Desirable?
 - Risk's contribution to portfolio risk may vary based on order in which it was added to portfolio, or order in which it was analyzed.
 - "For a given portfolio of accounts, a risk load method is renewal additive if the sum of the renewal risk loads calculated for each account equals the risk load calculated when the entire portfolio is treated as a single account."³

2.FROM ĞAME THEORY TO SOLVENCY QUANTILE CALCULATION: CAPITAL ALLOCATION WITH USE IN NONLIFE INSURANCE Nicolas ZEC1 3. AN APPLICATION OF GAME THEORY: PROPERTY CATASTROPHE RISK LOAD by Donald F. Mango

Concentration Pricing: Practical Considerations

- Recognition of Extreme Scenarios Extreme scenarios can pose existential threats to insurers. Should risks implicated in these events pay more?
- **Correlations and Aggregate Measures** Writing more risks independent of an insurer's existing portfolio could reduce the overall riskiness of the portfolio.
- **Analytical Practicality** What are the costs and benefits associated with analysis and implementation?

Hypothetical storm track from "<u>https://www.cnbc.com/2015/04/14/100-year-hurricane-could-cause-more-than-250b-losses-in-florida.html</u>"
Difference of the store of the

Methods Based on VaR/TVaR

Risk Measures

- Value at Risk (VaR) Expected outcome given some arbitrary percentile.
- Tail Value at Risk (TVaR) Average expected outcome above the arbitrary percentile.
- · Can be calculated for individual policies, territories, portfolios
- Methods can be proportional, incremental, or marginal.

• Example: Incremental Allocation Method based on Portfolio VaR/TVaR:

- Calculate risk measure at portfolio level
- Remove one territory and calculate risk measure
- Difference is the incremental contribution for that territory
- Repeat for all territories
- Allocate NCOR proportionally to the incremental contributions

- Proportional Allocate in proportion to measure for territory
- Incremental Allocate in proportion to impact to portfolio of removing territory
- Marginal Allocate in proportion to the impact on portfolio measure of next dollar or policy.

Allocating Correlation: Shapley Value And Covariance Share

• Shapley Value Method⁴:

- Calculate the variance within each territory
- Calculate all covariances between pairs of territories
- Calculate the variance at the portfolio level
- For each territory, add its variance with any covariance that involves it
- Divide by portfolio level variance
- Allocate NCOR proportional to this ratio

• Covariance Share Method⁴:

- Same first 3 steps as Shapley Value Method
- Calculate AAL proportions for all pairs of territories
- Allocate two times the covariances to each territory based on variance proportions
- For each territory, add its variance with its allocated covariance share
- Divide by portfolio level variance
- Allocate NCOR proportional to this ratio

4. AN APPLICATION OF GAME THEORY: PROPERTY CATASTROPHE RISK LOAD by Donald F. Mango

 $\begin{array}{l} L= Existing \ Account \\ N=New \ Account \\ Marginal \ Variance \ = \ Var(n)+2Cov(L,n) \\ Shapley \ Value \ = \ Var(n)+Cov(L,n) \\ Covariance \ Share \ -> \ Allocates \ the \ value \ Cov(L,n) \ in \\ proportion \ to \ the \ variance \ of \ the \ individual \ territory \ or \\ account \end{array}$

Using Simulation: Co-Measures Method

Co-Measures Methods⁵:

- Obtain portfolio level loss distribution via simulation
- Calculate contribution of territory or account within those simulations
- Advantages:
 - Allocated contributions add up to total contribution
 - Efficient Only one simulation run necessary in contrast with incremental or marginal approaches which require many
- Disadvantages
 - May still rely on arbitrary threshold
 - Must have ability to run simulation

5.Risk-Adjusted Performance Measurement for P&C Insurers Richard Goldfarb

Sorted					
Scenario	Market	Reserves	Line A	Line B	Total
1	779,323	12,180,298	3,188,429	4,994,583	21,142,632
2	494,425	8,169,822	3,734,913	913 8,695,665	21,094,825
3	-3,407,081	13,140,377	7,607,985	788,471	18,129,751
4	-779,922	2,587,705	5,675,660	10,386,216	17,869,658
5	-1,311,004	-1,203,142	3,238,333	16,924,158	17,648,345
6	-1,392,828	5,488,457	6,646,703	6,799,820	17,542,152
7	-255,475	4,812,487	4,018,249	7,904,885	16,480,145
8	-10,210	6,710,721	2,273,968	7,472,474	16,446,953
9	-1,896,169	4,433,724	1,652,542	12,169,231	16,359,328
10	758,494	3,132,459	2,330,630	10,003,805	16,225,388
11	-1,291,494	8,133,807	5,475,393	3,899,206	16,216,912
12	1,523,399	8,164,027	1,320,562	4,996,263	16,004,250
13	-1,507,026	8,701,922	4,941,913	3,358,494	15,495,303
14	-418,192	-390,473	1,172,596	15,112,222	15,476,153
15	348,569	4,904,846	4,173,982	6,001,026	15,428,423
:	:	:		:	:
490	-470,761	3,622,090	-148,615	4,519,262	7,521,976
491	-980,559	3,630,412	1,980,834	2,889,533	7,520,220
492	-2,921,510	2,906,628	-200,015	7,730,833	7,515,936
493	-1,179,044	3,552,559	2,343,631	2,794,807	7,511,953
494	-2,744,202	2,173,409	4,717,356	3,364,141	7,510,703
495	127,947	1,318,389	4,749,312	1,308,659	7,504,307
496	42,016	1,663,231	1,653,643	4,143,005	7,501,894
497	-1,062,298	2,170,695	6,366,285	27,183	7,501,865
498	-901,735	4,579,393	-124,816	3,947,145	7,499,986
499	-2,782,565	972,163	1,896,786	7,411,779	7,498,163
500	-2,959,845	6,146,281	863,894	3,441,193	7,491,523
Co-CTE	-908,399	3,715,533	2,279,319	<mark>4,549,138</mark>	9,635,591

Event-Based Allocation by Reinsurance Layer Method

Steps

§ Obtain event-account level AALs from cat model

- § Apply reinsurance treaties to get layer AALs
- § Use reinsurance premium multiples to allocate portfolio reinsurance premium to event-account level
- § Calculate NCOR at event-account level
- § Pick a geographical unit as basis (census block group, census tract, etc.)
- § Summarize total AAL and NCOR at the geographical unit level

§ Calculate geographical unit level cost ratio to Gross AAL

 $= 1 + \frac{NCOR}{Gross AAL}$

§ Apply this multiple to AAL relativities

Event-Based Allocation by Reinsurance Layer Method

Data and Tool Requirements

§ Data Requirements:

- q Risk characteristics required to run catastrophe simulation models
- **q** Reinsurance structure (limits, retention, premium)
- q Geographical information
- q Latitude and longitude
- q Census information
- q Catastrophe simulation model outputs for all sub-perils
- q Event level gross and ceded AALs by layer
- q Event-policy level gross AALs

§ Tool Requirements:

- q Catastrophe simulation models
- q Geographical clustering techniques (optional)

Demonstration – South Carolina Insurer

Relativity Point Maps – AAL vs Reinsurance Adjusted Relativity Based on AAL

Clustering Based on NCOR Multiples – Market Basket Sample Data

Deviance Point Maps – AAL vs Reinsurance Adjusted

Deviance Density Plot – AAL vs Reinsurance Adjusted

	Allocation Basis			
Statistic	AAL	Reinsurance Adjuste		
Average	1.26	0.04		
Standard Deviation	1.41	0.21		

Actuarial Allocation Technique Comparison Chart

	Concentration Risk	Extreme Scenario	Matching Rate/Cost	Order Dependence	Practicality
Proportional - AAL	Û	Û	û	Û	ü
Proportional - VaR / TVaR	R	R	R	Û	ü
Incremental/Marginal	R	R	R	Û	Û
Co-Measures	ü	R	ü	R	ü
Shapley Value	ü	R	ü	ü	Û
Covariance Share	ü	ü	ü	ü	Û
Event-Based by Reins. Layer	ü	ü	ü	R	R

Thank you

Tim Wei <u>tim.wei@milliman.com</u> (415) 394-3764 Cody Webb <u>cody.webb@milliman.com</u> Victoria Gomez <u>victoria.gomez@milliman.com</u>