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. Motivation for Automated Machine Learning
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* Demand for machine learning experts has outpaced the supply

* Human machine learning experts perform the following tasks:
» Preprocess and clean the data

Construct and select appropriate features

Select an appropriate model family

Optimize model hyperparameters

Postprocess machine learning models
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Critically analyze the results obtained

* Need user-friendly machine learning software that can be used by non-experts

* Automated Machine Learning attempts to optimize the inner loop
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. Hyperparameter Optimization
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* Hyperparameter types:
» Continuous (e.g. learning rate for gradient boosting), integer(e.g. number of trees in ensemble)
» Categorical: unordered, finite domain, e.g. {GBM, Neural Network, Random Forrest}
* Hyperparameter space has structure:
» Top level parameter A selects algorithm
» Learning rate parameter A is active only if A= GBM
» M\is a conditional hyperparameter with parent A
* Hyperparameters give rise to a structured space of algorithms:
» Many configurations (e.g. 1019)

» Configurations often yield qualitatively different behavior
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. Blackbox Hyperparameter Optimization
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. Optimization Strategy: Random Search
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* Select configurations of hyperparameters to test uniformly at random:
» Completely uninformed
» Performs global search, will not get stuck in a local optimum

» Better than grid search

Grid Search Random Search

Unimportant hyperparameter
Unimportant hyperparameter

Important hyperparameter Important hyperparameter



. Optimization Strategy: Stochastic Methods
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* Stochastic local search:
» Combines intensification and diversification steps
> Intensification: gradient descent
> Diversification: restarts, random steps, perturbations
>

Example: Simulated Annealing

* Population based methods:
» Search is both local and global via the population
» Maintain population fitness and diversity

» Examples: Genetic Algorithms, Evolutionary Strategies
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. Evolutionary Computing
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* Draws inspiration from natural evolution:
Evolution Problem Solving
Environment Problem
Individuals Candidate solutions
Survival fitness Solution quality

 Darwinian Evolution:

» Population consists of diverse set of individuals
» Combinations of traits that are better adapted tend to increase representation in population:
Individuals are “units of selection”
» Variations occur through random changes yielding constant source of diversity, coupled with selection:
Population is the “unit of evolution”

» There is no “guiding force”
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. Adaptive Landscape Metaphor (Wright, 1932)

* Population with n traits exists in a n+1-dimensional space (landscape) with height corresponding to fitness
* Each different individual (phenotype) represents a single point on the landscape
* Population is therefore a “cloud” of points, moving on the landscape over time as it evolves: adaptation
* Selection “pushes” population up the landscape
* Problem is “multimodal”
* Genetic drift:
»  Highly fit individuals may be lost
» Can cause the population to “melt down” hills,

thus crossing valleys and leaving local optima




. General Scheme of Evolutionary Algorithms %
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Parent selection

Parents
Initialization
Recombination
(crossover)
—  Population
Mutation

v
Termination |
Offspring

Survivor selection
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. Dialects of Evolutionary Computing 2N
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* Generally differ on candidate solution representation:

>

>

>

>

Genetic Algorithms (GAs): strings over a finite alphabet
Evolution Strategies (EAs): real-valued vectors
Classical Evolutionary Programming (EP): finite-state machines

Genetic Programming (GP): parse trees

* One representation may be preferable if it matches problem representation better:

>

>

Checkers-playing program: parse trees or finite state machines (EP or GP)

Satisfiability problem on n variables: bit-strings of length n (GA)

* Variation operators (recombination and mutation) are representation specific

* Selection process only takes fitness into account, so independent of representation




. Components of Evolutionary Algorithms

* Representation (definition of individuals):
» Mapping from original objects (phenotypes) to EA objects (genotypes)
» Whole search takes place in the genotype space
» Solution is obtained by decoding the best genotype after termination

» Example: for integer optimization problems, map each integer into its base 2 representation:

Phenotype space Genotype space
Encoding
(representation) > / 10010
00010
<€ 01001 /
Decoding

(inverse representation)
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. Components of Evolutionary Algorithms (cont.)

* Evaluation (fitness) function:
» Represents the task to solve, the requirements to adapt to (can be seen as “the environment”)
» Enables selection (provides basis for comparison)

»  Assigns a single real-valued fitness to each genotype, which forms the basis for selection, so the more

discrimination (different values) the better
* Population:
» Holds the candidate solutions of the problem as individuals (genotypes)
Multiset of individuals, i.e. repetitions are possible
Population is the basic unit of evolution, i.e., the population is evolving, not the individuals

Selection operators act on population level

vV V V V

Selection operators usually take whole population into account i.e., reproductive probabilities are relative

to current generation

A\

Diversity of a population refers to the number of different fitnesses / phenotypes / genotypes present

» Variation operators act on individual level
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. Components of Evolutionary Algorithms (cont.)
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¢ Parent selection mechanism:

>

>

Identifies individuals to become parents
Pushes population towards higher fitness
Enables selection (provides basis for comparison)

Usually stochastic, high quality solutions more likely to be selected than low quality solutions (not

guaranteed); even worst fit individual has non-zero probability of being selected
Stochastic nature aids in escaping from local optima

Example: Roulette wheel selection:
Fitness(A) =3
Fitness(B) =1

3/6 =50% 2/6 =33%
Fitness(C) = 2




. Components of Evolutionary Algorithms (cont.)
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* Variation Operators

> Generate new candidate solutions

» Mutation: causes small, random variance, acts on one genotype and returns another

Before 1111111

After 1110111—>v

» Crossover: merges information from parents into offspring

e
\cut \ cut
Parents | 111 111 000Y0000
g ><

LA

Offspring 1110000 0001111




. Components of Evolutionary Algorithms (cont.)

* Survivor selection mechanism (replacement):
» Most EAs use fixed population size so need a way of going from parents + offspring to next generation
» Often deterministic (while parent selection is usually stochastic)
=  Fitness based : rank parents + offspring and take best
=  Age based: make as many offspring as parents and delete all parents
» Sometimes a combination of stochastic and deterministic (elitism)
* Initialization:
» Usually done at random
» Caninclude existing solutions, or use problem-specific heuristics, to “seed” the population
* Termination condition:
» Checked every generation
» Reaching some maximum allowed number of generations
» Reaching some minimum level of diversity
>

Reaching some specified number of generations without fitness improvement
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. Example of Evolutionary Cycle

Maximize f(x) = x2 over the integers 0...31

» Use 5-bit binary encoding of integers (phenotypes) into bit-strings (genotypes)

» Roulette-wheel parent selection (proportional to fitness function value)

» Replace entire population with the offspring

C| d Analvtirce
y Al Idiyucos
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String No. Po:)nuilt;::on Value of x fl?:)n =e§(sz Probability E)::r:)euc::d Actual Count
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 4.00 4
Average 293 1.00 1
Max 576 1.97 2

_



* Crossover and offspring evaluation:

. Example of Evolutionary Cycle (cont.)

String No. Mating Pool Cross.over Offspring after x Value Fitness2
Point xover f(x) = x
1 01101 4 01100 12 144
2 110010 4 11001 25 625
2 11]/000 2 11011 27 729
4 10/011 2 10000 16 256
Sum 1754
Average 439
Max 729
*  Mutation and offspring evaluation:

String No. OﬁSf(:\’:grafte’ °ff:n'°l:t':tgi::ter x Value f':(':)“fii
1 01100 11100 26 676
2 11001 11001 25 625
2 11011 11011 27 729
4 10000 10100 18 324
Sum 2354
Average 588.5
Max 729
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. Numerical Optimization: Differential Evolution
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« Differential Evolution: e

>

vV V. V VY

Storn & Price, 1997

Designed to deal with multimodal objective functions, not necessarily continuous or differentiable
Population members: n-dimensional real vectors, objective function assumed to be minimized

Differential Mutation: add a perturbation vector to an existing one

Initially designed for unconstrained optimization, can be extended to handle inequality constraints




Differential Evolution Description
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*  Problem Setup:

> Function f: R¥ - R to be minimized

» Box constraints on the arguments: Xj € [aj,bj] for j=1,...k
* Population Initialization:
> Random:x;; = a; + randj[O, 1)- (bj — aj), j=1,..,k; i =1,..,Np, where Np = population size
» If any inequality constraints present, force initial members to be in the feasible region
* Crossover:
» Add a perturbation vector to each base vector: v; =X; + F- (X1 —Xp2), i = 1,...,Np
v;jifrand;[0,1) < Cr

> Generate target vector: u;; = {x otherwise ,j=1,..,k.
ij

» Selection: replace x; with u; in the population if f(u;) < f(x;), keep X; otherwise

* Typical parameter values: F € [0.5,1.0], Cr € [0.8,1.0], Np=10-k

_



. Feature Generation by Genetic Programming
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¢ Differences from other EA strands:

>

>

Positioned as machine learning (as opposed to optimization): seek models with maximum fit

Uses parse trees as chromosomes (for arithmetic expressions, formulas in predicate logic, or code written

in a given programming language)
Universe: set of functions F = {+, -, *, /, sin, min, max, if, <=, <, >=, >} and set of terminals T=R U {x, y}

Example expression: max(sin(x) + 2, x+ 3 *vy)

sin 2 X *




. Genetic Programming (cont.)
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* Initialization: ramped half-and-half, combination of full and grow

Full method' each tree branch has equal Iength Grow method branches may have different lengths

AL EE AR A
PV Vs RN

e Crossover: Parents » Offsprmg
Crossover ST

(xa" 2)+3

_____________

Crossover .. ,,,-—-"“‘"—J:;;::H
Point\.-“ @) (y+1) (x2) S




. Genetic Programming (cont.)
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*  Mutation:

Parents Offspring

Mutation Mutation

}<®\ ( - -

Randomly Generated
Sub-tree

S

*  Fitness Function (Symbolic Regression example):

>  Given a set of n observations (x1, ¥1,21), ..., (X5, Vn, Z,) find a function f(x, y) that approximates z

»  Minimize err(f) = X1, (f (i, v:) — 2)?

_



. Symbolic Regression Example 5
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5M records, PPA data for 5 main coverages

Model response: loss ratio; Model weights: earned fitted pure premium

Function Set = {+, -, *, /, exp, abs, if}, Terminals = 20 numerical predictors + real constants
Fitness function: Gini, Population size: 100, Evolution steps: 200

Model trained on 60% of data chosen at random, validated on remaining 40%

vV V VvV YV VY V

Sample expression (Individual #1, best Gini):

SAFE_EVAL(EXP((LOYALTY_MOD - 8.98)/7.769 - ((coll_vrg_curr - 23.247)/9.929 - (ab_vrg_curr - 32.32)/6.299)) *
(EXP((LOYALTY_MOD - 8.98)/7.769 - ((dc_vrg_curr - 23.247)/9.929 - (ab_vrg_curr-32.32)/6.299)) *
EXP(0.742900070070423 - (TOT_VEH - 1.813)/0.947)))

(.I_I::':(;d;iatle) Lift Validation Lift Gini Validation Gini Correlation
1 2.00 2.03 0.106 0.106 99.37%
2 2.00 2.05 0.105 0.104 99.12%
3 2.05 2.07 0.105 0.105 98.39%
4 2.05 2.07 0.105 0.105 98.38%
5 2.05 2.07 0.105 0.105 98.39%
6 2.05 2.07 0.105 0.105 98.36%
7 2.05 2.07 0.105 0.105 98.37%
8 2.05 2.07 0.105 0.105 98.38%
9 1.89 1.97 0.103 0.107 97.51%
10 1.91 1.83 0.101 0.100 98.00%
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. AutoML Component Algorithms
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* Penalized GLMs (ridge, lasso, elastic net)
* Neural Networks
* Ensembles:
» Combines weak base learners that come from the same class, such as trees
» Bagging: averaging predictions of weak learners trained independently on subsets of the data
» Boosting: summing predictions of weak learners trained sequentially on modified versions of the data
* Stacked models (Super Learners):

» Combines strong, diverse sets of learners together

» Trains a second-level “metalearner” to find the optimal combination of the base learners




. Neural Networks
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* Hyperparameters: M (number of nodes in hidden layer), g, g, A (regularization strength), n (number of hidden

layers)

Output Layer °

* Two-stage regression or classification:

> Iy = J(yOm + VrEX)rm =
1,...M

> Y =fX)=g"(Bo+p"2)

* 0o is the activation function:
Hidden Layer Q Q Zy > Sigmoid
\\,/ \ / > Hyperbolic tangent
! ":’ * g is the link function
, \ » Log oridentity for regression
; » Logit for classification
Input Layer ° X, Xp; °




. Fitting Neural Networks

i L L
* Model parameters (complete set of network weights 0):
> {yOm,ym:m =1, ...,M} — M(P + 1) weights
> {Bo, B} — M + 1 weights
» Neural networks can approximate any continuous function with an arbitrary degree of precision by
increasing M

* Error function:
> R(O) =YY" ,(vi— f(x))*> -sum of squared errors or deviance (regression)
» R(O) =—Y",v;logf(x;) -cross-entropy (classification)
* Optimize penalized error R(6) + A - P(6) to prevent overfitting:
> P(8) =Y BA + Y uvi - quadratic
> P(0) = XmlBml + Zpulymul - linear

B Yim o
> P(0) =me+2ml 1+y§nl - elimination

* GLMs (and penalized GLMs) are a special case of neural network:

» Deviance as the error function
» ldentity as the activation function

» One node in the hidden layer

_



. Gradient Boosting for Regression Trees
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Training | Modified | Modified Modified
Data Data Data | v Data
f1(x) f2(x) f3(x) fu(x)

* Hyperparameters: M (number of component trees), k (size of component trees), A (learning rate)
e Form=1,2,..,Mdo:
» For each observationi = 1,2, ..., n compute pseudo residuals:
Tim = Yi = fm-1(%:)
» Fit “weak” learner (regression tree with k terminal nodes) to 1y, giving regions R{, R,, ..., R
» Forj=1,2,..,k:
@; = observed average for region R;
» Update f,,(x) = fp—1(x) + 4 - Z;‘zl a; - I(x €R))

*  Final model: f(x) = fi;(x)

_



. Super Learner Algorithm
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* Set up the ensemble:

» Specify a list of L base algorithms (with a specific set of hyperparameters for each)

» Specify a metalearning algorithm, e.g. GLM with positive weights, GBM, NN, etc.

* Train the ensemble:
» Train each of the L base algorithms on the training set

» Perform k-fold cross-validation on each of these learners and collect the cross-validated predicted values

» Combine the N cross-validated predicted values from each of the L algorithms into a N x L matrix, to

create the level-one data (N = number of rows in the training set)

» Train the metalearning algorithm on the level-one data, with the same response as the L base algorithms

* Predict on new data:
» Generate predictions from the L base learners

» Feed those predictions into the metalearner to generate the ensemble prediction.

_



. Insurance Application
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* H,0.ai machine learning framework:
» “Open source, in-memory, distributed, fast, and scalable”
» Core written in Java, can be used from R or Python

» AutoML component algos: Penalized GLMs (elastic net), Random Forests, Extremely Randomized Trees,

GBM, Multi-layer NN (deep learning), Stacked Ensembles
» Candidate models are scored using 5-fold cross validation deviance
* Human expert:
» Component algos: GLMs, customized versions of single-layer NN and boosted trees
» Pipeline: GLM, followed by single-layer NN on GLM residuals, followed by boosted trees on NN residuals
* PPA COLL dataset, 7M records, 35 predictors:
» 60/40 train/validation split

» Model Weights: EEXP - pred GLM

» Model Response: Observed_Loss [ (EEXP - pred GLM)

_



AutoML Leaderboard , %
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Model Lift Train Gini Train Lift Valid Gini Valid
XRT_1_AutoML_20190321_164505 538.99 0.65 1.26 0.05
DRF_1_AutoML_20190321_164505 1111.97 0.63 1.20 0.04
GBM_grid_1_AutoML_20190321_164505_model_2 35.22 0.49 1.88 0.12
GBM_5_ AutoML_20190321_164505 28.05 0.37 1.42 0.08
GBM_grid_1_AutoML_20190321_164505_model_7 21.63 0.32 1.26 0.06
StackedEnsemble_BestOfFamily_AutoML_ 20190321 164505 6.12 0.29 2.20 0.12
StackedEnsemble_AllIModels_AutoML_20190321_164505 5.47 0.27 2.21 0.13
GBM_4 AutoML_20190321_164505 6.49 0.21 2.11 0.13
GBM_grid_1_AutoML_20190321_164505_model_8 3.99 0.20 1.31 0.07
GBM_3_AutoML_20190321_164505 4.18 0.18 2.27 0.13
GBM_2_AutoML_20190321_164505 3.84 0.17 2.32 0.13
GBM_1_AutoML_20190321_164505 3.35 0.16 2.54 0.13
GBM_grid_1_AutoML_20190321_164505_model_6 3.84 0.14 1.20 0.11
GLM_grid_1_AutoML_20190321_164505_model_1 2.25 0.12 2.16 0.12
Deeplearning_grid_1_AutoML_20190321_164505_model_8 1.30 0.05 1.24 0.04
Deeplearning_grid_1_AutoML_20190321_164505_model_1 1.39 0.04 1.31 0.04
Deeplearning_grid_1_ AutoML_ 20190321 164505_model_3 1.07 0.01 1.15 0.02
Deeplearning_grid_1_AutoML 20190321 164505 model 2 1.08 0.00 1.21 0.02
Deeplearning_grid_1_AutoML 20190321 164505 model 7 1.07 0.00 1.09 0.01
Deeplearning_1_AutoML_20190321_164505 0.71 0.00 0.80 0.01
Clyde_NN 3.01 0.17 2.35 0.14
Clyde NN Boosted Tree 2.85 0.17 2.50 0.14

_



. AutoML Double Lift Test
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Gini Train Rank
Dataset 1 38.50% 0.13 | PPACOLL Loss Ratio
Dataset 2 68.24% 0.54 | Comm Prop Pure Prem
Dataset 3 -5.64% 0.07 | HO All Perils Loss Ratio
Dataset 4 46.75% 0.13 | PPA All Coverages Loss Ratio
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. Conclusions
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*  AutoML can successfully perform the following tasks:
» Construct and select appropriate features
» Select an appropriate model family
» Optimize model hyperparameters
» Postprocess machine learning models

* Relatively easy to use out of the box, decent default settings for some algorithms, such as GBM
*  Produced (some) models with good performance

* Human expert still needed to inspect results for reasonableness and select the final model

* AutoML generates a large number of hypotheses, danger of “overfitting the validation data”

* AutoML performance depends on difficulty of problem, e.g. ground-up vs. residual analysis

*  When in doubt, and with no prior knowledge about the domain, select a “middle-performing” model, not top

models, to ensure better expected generalization performance

* Human experience plus customized algorithms in a custom pipeline can outperform AutoML

_



