
Automated Machine Learning for Insurance
Applications

CAS RPM Boston, March 2019

Eliade Micu, PhD, FCAS

Director, Research and Development, Clyde Analytics

CONFIDENTIAL | www.clyde-analytics.com

2© 2019 Clyde Analytics  www.clyde-analytics.com

Automated Machine Learning
Motivation
Hyperparameter Optimization
Evolutionary Algorithms
Feature Creation and Selection
Component Algorithms

Insurance Applications
Problem Description
Results

Conclusions

Presentation Outline

3© 2019 Clyde Analytics  www.clyde-analytics.com

• Demand for machine learning experts has outpaced the supply

• Human machine learning experts perform the following tasks:

➢ Preprocess and clean the data

➢ Construct and select appropriate features

➢ Select an appropriate model family

➢ Optimize model hyperparameters

➢ Postprocess machine learning models

➢ Critically analyze the results obtained

• Need user-friendly machine learning software that can be used by non-experts

• Automated Machine Learning attempts to optimize the inner loop

Motivation for Automated Machine Learning

4© 2019 Clyde Analytics  www.clyde-analytics.com

• Hyperparameter types:

➢ Continuous (e.g. learning rate for gradient boosting), integer(e.g. number of trees in ensemble)

➢ Categorical: unordered, finite domain, e.g. {GBM, Neural Network, Random Forrest}

• Hyperparameter space has structure:

➢ Top level parameter A selects algorithm

➢ Learning rate parameter λ is active only if A = GBM

➢ λ is a conditional hyperparameter with parent A

• Hyperparameters give rise to a structured space of algorithms:

➢ Many configurations (e.g. 1010)

➢ Configurations often yield qualitatively different behavior

Hyperparameter Optimization

5© 2019 Clyde Analytics  www.clyde-analytics.com

Blackbox Hyperparameter Optimization

Hyperparameter
configuration λ

Cross-validation
performance f(λ)

Hyperparameter
Optimizer

6© 2019 Clyde Analytics  www.clyde-analytics.com

• Select configurations of hyperparameters to test uniformly at random:

➢ Completely uninformed

➢ Performs global search, will not get stuck in a local optimum

➢ Better than grid search

Optimization Strategy: Random Search

Important hyperparameter

U
n

im
p

o
rt

an
t

h
yp

er
p

ar
am

et
er

Grid Search

Important hyperparameter

U
n

im
p

o
rt

an
t

h
yp

er
p

ar
am

et
er

Random Search

7© 2019 Clyde Analytics  www.clyde-analytics.com

• Stochastic local search:

➢ Combines intensification and diversification steps

➢ Intensification: gradient descent

➢ Diversification: restarts, random steps, perturbations

➢ Example: Simulated Annealing

• Population based methods:

➢ Search is both local and global via the population

➢ Maintain population fitness and diversity

➢ Examples: Genetic Algorithms, Evolutionary Strategies

Optimization Strategy: Stochastic Methods

8© 2019 Clyde Analytics  www.clyde-analytics.com

• Draws inspiration from natural evolution:

• Darwinian Evolution:

➢ Population consists of diverse set of individuals

➢ Combinations of traits that are better adapted tend to increase representation in population:

Individuals are “units of selection”

➢ Variations occur through random changes yielding constant source of diversity, coupled with selection:

Population is the “unit of evolution”

➢ There is no “guiding force”

Evolutionary Computing

Evolution Problem Solving

Environment Problem

Individuals Candidate solutions

Survival fitness Solution quality

9© 2019 Clyde Analytics  www.clyde-analytics.com

• Population with n traits exists in a n+1-dimensional space (landscape) with height corresponding to fitness

• Each different individual (phenotype) represents a single point on the landscape

• Population is therefore a “cloud” of points, moving on the landscape over time as it evolves: adaptation

• Selection “pushes” population up the landscape

• Problem is “multimodal”

• Genetic drift:

➢ Highly fit individuals may be lost

➢ Can cause the population to “melt down” hills,

thus crossing valleys and leaving local optima

Adaptive Landscape Metaphor (Wright, 1932)

10© 2019 Clyde Analytics  www.clyde-analytics.com

General Scheme of Evolutionary Algorithms

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Initialization

Termination

11© 2019 Clyde Analytics  www.clyde-analytics.com

• Generally differ on candidate solution representation:

➢ Genetic Algorithms (GAs): strings over a finite alphabet

➢ Evolution Strategies (EAs): real-valued vectors

➢ Classical Evolutionary Programming (EP): finite-state machines

➢ Genetic Programming (GP): parse trees

• One representation may be preferable if it matches problem representation better:

➢ Checkers-playing program: parse trees or finite state machines (EP or GP)

➢ Satisfiability problem on n variables: bit-strings of length n (GA)

• Variation operators (recombination and mutation) are representation specific

• Selection process only takes fitness into account, so independent of representation

Dialects of Evolutionary Computing

12© 2019 Clyde Analytics  www.clyde-analytics.com

• Representation (definition of individuals):

➢ Mapping from original objects (phenotypes) to EA objects (genotypes)

➢ Whole search takes place in the genotype space

➢ Solution is obtained by decoding the best genotype after termination

➢ Example: for integer optimization problems, map each integer into its base 2 representation:

Components of Evolutionary Algorithms

Genotype spacePhenotype space
Encoding

(representation)

Decoding
(inverse representation)

00010

01001

10010

18

2

9

13© 2019 Clyde Analytics  www.clyde-analytics.com

• Evaluation (fitness) function:

➢ Represents the task to solve, the requirements to adapt to (can be seen as “the environment”)

➢ Enables selection (provides basis for comparison)

➢ Assigns a single real-valued fitness to each genotype, which forms the basis for selection, so the more

discrimination (different values) the better

• Population:

➢ Holds the candidate solutions of the problem as individuals (genotypes)

➢ Multiset of individuals, i.e. repetitions are possible

➢ Population is the basic unit of evolution, i.e., the population is evolving, not the individuals

➢ Selection operators act on population level

➢ Selection operators usually take whole population into account i.e., reproductive probabilities are relative

to current generation

➢ Diversity of a population refers to the number of different fitnesses / phenotypes / genotypes present

➢ Variation operators act on individual level

Components of Evolutionary Algorithms (cont.)

14© 2019 Clyde Analytics  www.clyde-analytics.com

• Parent selection mechanism:

➢ Identifies individuals to become parents

➢ Pushes population towards higher fitness

➢ Enables selection (provides basis for comparison)

➢ Usually stochastic, high quality solutions more likely to be selected than low quality solutions (not

guaranteed); even worst fit individual has non-zero probability of being selected

➢ Stochastic nature aids in escaping from local optima

➢ Example: Roulette wheel selection:

Components of Evolutionary Algorithms (cont.)

Fitness(A) = 3

Fitness(B) = 1

Fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

15© 2019 Clyde Analytics  www.clyde-analytics.com

• Variation Operators

➢ Generate new candidate solutions

➢ Mutation: causes small, random variance, acts on one genotype and returns another

➢ Crossover: merges information from parents into offspring

Components of Evolutionary Algorithms (cont.)

Before

1 1 1 0 1 1 1After

1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 0 0 0

cut cut

Offspring 1 1 1 0 0 0 0 0 0 0 1 1 1 1

Parents

16© 2019 Clyde Analytics  www.clyde-analytics.com

• Survivor selection mechanism (replacement):

➢ Most EAs use fixed population size so need a way of going from parents + offspring to next generation

➢ Often deterministic (while parent selection is usually stochastic)

▪ Fitness based : rank parents + offspring and take best

▪ Age based: make as many offspring as parents and delete all parents

➢ Sometimes a combination of stochastic and deterministic (elitism)

• Initialization:

➢ Usually done at random

➢ Can include existing solutions, or use problem-specific heuristics, to “seed” the population

• Termination condition:

➢ Checked every generation

➢ Reaching some maximum allowed number of generations

➢ Reaching some minimum level of diversity

➢ Reaching some specified number of generations without fitness improvement

Components of Evolutionary Algorithms (cont.)

17© 2019 Clyde Analytics  www.clyde-analytics.com

Example of Evolutionary Cycle

• Maximize f(x) = x2 over the integers 0…31

➢ Use 5-bit binary encoding of integers (phenotypes) into bit-strings (genotypes)

➢ Roulette-wheel parent selection (proportional to fitness function value)

➢ Replace entire population with the offspring

String No.
Initial

Population
Value of x

Fitness
f(x) = x2 Probability

Expected
Count

Actual Count

1 0 1 1 0 1 13 169 0.14 0.58 1

2 1 1 0 0 0 24 576 0.49 1.97 2

3 0 1 0 0 0 8 64 0.06 0.22 0

4 1 0 0 1 1 19 361 0.31 1.23 1

Sum 1170 4.00 4

Average 293 1.00 1

Max 576 1.97 2

18© 2019 Clyde Analytics  www.clyde-analytics.com

Example of Evolutionary Cycle (cont.)

• Crossover and offspring evaluation:

String No. Mating Pool
Crossover

Point
Offspring after

xover
x Value

Fitness
f(x) = x2

1 0 1 1 0 | 1 4 0 1 1 0 0 12 144

2 1 1 0 0 | 0 4 1 1 0 0 1 25 625

2 1 1 | 0 0 0 2 1 1 0 1 1 27 729

4 1 0 | 0 1 1 2 1 0 0 0 0 16 256

Sum 1754

Average 439

Max 729

• Mutation and offspring evaluation:

String No.
Offspring after

xover
Offspring after

Mutation
x Value

Fitness
f(x) = x2

1 0 1 1 0 0 1 1 1 0 0 26 676

2 1 1 0 0 1 1 1 0 0 1 25 625

2 1 1 0 1 1 1 1 0 1 1 27 729

4 1 0 0 0 0 1 0 1 0 0 18 324

Sum 2354

Average 588.5

Max 729

19© 2019 Clyde Analytics  www.clyde-analytics.com

• Differential Evolution:

➢ Storn & Price, 1997

➢ Designed to deal with multimodal objective functions, not necessarily continuous or differentiable

➢ Population members: n-dimensional real vectors, objective function assumed to be minimized

➢ Differential Mutation: add a perturbation vector to an existing one

➢ Initially designed for unconstrained optimization, can be extended to handle inequality constraints

Numerical Optimization: Differential Evolution

20© 2019 Clyde Analytics  www.clyde-analytics.com

• Problem Setup:

➢ Function 𝑓: ℝ𝑘 → ℝ to be minimized

➢ Box constraints on the arguments: 𝑥𝑗 ∈ 𝑎𝑗 , 𝑏𝑗 for 𝑗 = 1,… , 𝑘

• Population Initialization:

➢ Random: 𝑥𝑖𝑗 = 𝑎𝑗 + rand𝑗 0, 1 ∙ 𝑏𝑗 − 𝑎𝑗 , 𝑗 = 1,… , 𝑘; 𝑖 = 1,… , Np, where Np = population size

➢ If any inequality constraints present, force initial members to be in the feasible region

• Crossover:

➢ Add a perturbation vector to each base vector: 𝐯𝑖 = 𝐱𝑖 + F ∙ (𝐱r1 – 𝐱𝐫2), 𝑖 = 1,… , Np

➢ Generate target vector: 𝐮𝑖𝑗 = ൝
𝐯𝑖𝑗 if rand𝑗[0, 1) ≤ Cr

𝐱𝑖𝑗 otherwise
, 𝑗 = 1,… , 𝑘.

• Selection: replace 𝐱𝑖 with 𝐮𝑖 in the population if 𝑓(𝐮𝑖) ≤ 𝑓(𝐱𝑖), keep 𝐱𝑖 otherwise

• Typical parameter values: F ∈ 0.5, 1.0 , Cr ∈ 0.8, 1.0 , Np = 10 ∙ 𝑘

Differential Evolution Description

21© 2019 Clyde Analytics  www.clyde-analytics.com

• Differences from other EA strands:

➢ Positioned as machine learning (as opposed to optimization): seek models with maximum fit

➢ Uses parse trees as chromosomes (for arithmetic expressions, formulas in predicate logic, or code written

in a given programming language)

➢ Universe: set of functions F = {+, -, *, /, sin, min, max, if, <=, <, >=, >} and set of terminals T = ℝ∪ {x, y}

➢ Example expression: max(sin(x) + 2, x + 3 * y)

Feature Generation by Genetic Programming

max

+

sin

x

2

+

x *

3 y

22© 2019 Clyde Analytics  www.clyde-analytics.com

• Initialization: ramped half-and-half, combination of full and grow

Full method: each tree branch has equal length Grow method: branches may have different lengths

• Crossover:

Genetic Programming (cont.)

23© 2019 Clyde Analytics  www.clyde-analytics.com

• Mutation:

• Fitness Function (Symbolic Regression example):

➢ Given a set of 𝑛 observations 𝑥1, 𝑦1, 𝑧1 , … , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛 find a function 𝑓 𝑥, 𝑦 that approximates 𝑧

➢ Minimize 𝑒𝑟𝑟 𝑓 = σ𝑖=1
𝑛 𝑓 𝑥𝑖 , 𝑦𝑖 − 𝑧𝑖

2

Genetic Programming (cont.)

24© 2019 Clyde Analytics  www.clyde-analytics.com

➢ 5M records, PPA data for 5 main coverages

➢ Model response: loss ratio; Model weights: earned fitted pure premium

➢ Function Set = {+, -, *, /, exp, abs, if}, Terminals = 20 numerical predictors + real constants

➢ Fitness function: Gini, Population size: 100, Evolution steps: 200

➢ Model trained on 60% of data chosen at random, validated on remaining 40%

➢ Sample expression (Individual #1, best Gini):

SAFE_EVAL(EXP((LOYALTY_MOD - 8.98)/7.769 - ((coll_vrg_curr - 23.247)/9.929 - (ab_vrg_curr - 32.32)/6.299)) *

(EXP((LOYALTY_MOD - 8.98)/7.769 - ((dc_vrg_curr - 23.247)/9.929 - (ab_vrg_curr - 32.32)/6.299)) *

EXP(0.742900070070423 - (TOT_VEH - 1.813)/0.947)))

Symbolic Regression Example

Individual
(Top 10 Elite)

Lift Validation Lift Gini Validation Gini Correlation

1 2.00 2.03 0.106 0.106 99.37%

2 2.00 2.05 0.105 0.104 99.12%

3 2.05 2.07 0.105 0.105 98.39%

4 2.05 2.07 0.105 0.105 98.38%

5 2.05 2.07 0.105 0.105 98.39%

6 2.05 2.07 0.105 0.105 98.36%

7 2.05 2.07 0.105 0.105 98.37%

8 2.05 2.07 0.105 0.105 98.38%

9 1.89 1.97 0.103 0.107 97.51%

10 1.91 1.83 0.101 0.100 98.00%

25© 2019 Clyde Analytics  www.clyde-analytics.com

• Penalized GLMs (ridge, lasso, elastic net)

• Neural Networks

• Ensembles:

➢ Combines weak base learners that come from the same class, such as trees

➢ Bagging: averaging predictions of weak learners trained independently on subsets of the data

➢ Boosting: summing predictions of weak learners trained sequentially on modified versions of the data

• Stacked models (Super Learners):

➢ Combines strong, diverse sets of learners together

➢ Trains a second-level “metalearner” to find the optimal combination of the base learners

AutoML Component Algorithms

26© 2019 Clyde Analytics  www.clyde-analytics.com

Neural Networks

𝑋P-1 𝑋P𝑋1 𝑋2 𝑋3 …..

𝑍M𝑍1 𝑍2 …..

𝑌Output Layer

Hidden Layer

Input Layer

• Two-stage regression or classification:

➢ 𝑍𝑚 = 𝜎 𝛾0𝑚 + 𝛾𝑚
𝑇𝑋 ,𝑚 =

1,… ,𝑀

➢ 𝑌 = 𝑓 𝑋 = 𝑔−1 𝛽0 + 𝛽𝑇𝑍

• 𝜎 is the activation function:

➢ Sigmoid

➢ Hyperbolic tangent

• 𝑔 is the link function

➢ Log or identity for regression

➢ Logit for classification

• Hyperparameters: 𝑀 (number of nodes in hidden layer), 𝜎, 𝑔, 𝜆 (regularization strength), 𝑛 (number of hidden

layers)

27© 2019 Clyde Analytics  www.clyde-analytics.com

Fitting Neural Networks

• Model parameters (complete set of network weights 𝜽):

➢ 𝛾0𝑚, 𝛾𝑚 : 𝑚 = 1,… ,𝑀 → 𝑀 𝑃 + 1 weights

➢ 𝛽0, 𝛽 → 𝑀 + 1 weights

➢ Neural networks can approximate any continuous function with an arbitrary degree of precision by
increasing 𝑀

• Error function:

➢ 𝑅 𝜃 = σ𝑖=1
𝑛 𝑦𝑖 − 𝑓(𝑥𝑖)

2 - sum of squared errors or deviance (regression)

➢ 𝑅 𝜃 = −σ𝑖=1
𝑛 𝑦𝑖 log 𝑓(𝑥𝑖) - cross-entropy (classification)

• Optimize penalized error 𝑅 𝜃 + 𝜆 ∙ 𝑃(𝜃) to prevent overfitting:

➢ 𝑃 𝜃 = σ𝑚𝛽𝑚
2 + σ𝑚𝑙 𝛾𝑚𝑙

2 - quadratic

➢ 𝑃 𝜃 = σ𝑚 𝛽𝑚 + σ𝑚𝑙 𝛾𝑚𝑙 - linear

➢ 𝑃 𝜃 = σ𝑚
𝛽𝑚
2

1+𝛽𝑚
2 +σ𝑚𝑙

𝛾𝑚𝑙
2

1+𝛾𝑚𝑙
2 - elimination

• GLMs (and penalized GLMs) are a special case of neural network:

➢ Deviance as the error function

➢ Identity as the activation function

➢ One node in the hidden layer

28© 2019 Clyde Analytics  www.clyde-analytics.com

Gradient Boosting for Regression Trees

• Hyperparameters: 𝑀 (number of component trees), 𝑘 (size of component trees), 𝜆 (learning rate)

• For 𝑚 = 1, 2,… ,𝑀 do:

➢ For each observation 𝑖 = 1,2,… , 𝑛 compute pseudo residuals:

𝑟𝑖𝑚 = 𝑦𝑖 − 𝑓𝑚−1(𝑥𝑖)

➢ Fit “weak” learner (regression tree with 𝑘 terminal nodes) to 𝑟𝑖𝑚 giving regions 𝑅1, 𝑅2, … , 𝑅𝑘

➢ For 𝑗 = 1,2,… , 𝑘:

𝛼𝑗 = observed average for region 𝑅𝑗

➢ Update 𝑓𝑚 𝑥 = 𝑓𝑚−1 𝑥 + 𝜆 ∙ σ𝑗=1
𝑘 𝛼𝑗 ∙ 𝐼(𝑥 ∈ 𝑅𝑗)

• Final model: መ𝑓 𝑥 = 𝑓𝑀(𝑥)

Training
Data

𝑓1 𝑥

Modified
Data

𝑓2 𝑥

Modified
Data

𝑓3 𝑥

Modified
Data

𝑓𝑀 𝑥

……

29© 2019 Clyde Analytics  www.clyde-analytics.com

Super Learner Algorithm

• Set up the ensemble:

➢ Specify a list of L base algorithms (with a specific set of hyperparameters for each)

➢ Specify a metalearning algorithm, e.g. GLM with positive weights, GBM, NN, etc.

• Train the ensemble:

➢ Train each of the L base algorithms on the training set

➢ Perform k-fold cross-validation on each of these learners and collect the cross-validated predicted values

➢ Combine the N cross-validated predicted values from each of the L algorithms into a N x L matrix, to

create the level-one data (N = number of rows in the training set)

➢ Train the metalearning algorithm on the level-one data, with the same response as the L base algorithms

• Predict on new data:

➢ Generate predictions from the L base learners

➢ Feed those predictions into the metalearner to generate the ensemble prediction.

30© 2019 Clyde Analytics  www.clyde-analytics.com

Insurance Application

• H20.ai machine learning framework:

➢ “Open source, in-memory, distributed, fast, and scalable”

➢ Core written in Java, can be used from R or Python

➢ AutoML component algos: Penalized GLMs (elastic net), Random Forests, Extremely Randomized Trees,

GBM, Multi-layer NN (deep learning), Stacked Ensembles

➢ Candidate models are scored using 5-fold cross validation deviance

• Human expert:

➢ Component algos: GLMs, customized versions of single-layer NN and boosted trees

➢ Pipeline: GLM, followed by single-layer NN on GLM residuals, followed by boosted trees on NN residuals

• PPA COLL dataset, 7M records, 35 predictors:

➢ 60/40 train/validation split

➢ Model Weights: EEXP · pred_GLM

➢ Model Response: Observed_Loss / (EEXP · pred_GLM)

31© 2019 Clyde Analytics  www.clyde-analytics.com

AutoML Leaderboard

Model Lift Train Gini Train Lift Valid Gini Valid

XRT_1_AutoML_20190321_164505 538.99 0.65 1.26 0.05

DRF_1_AutoML_20190321_164505 1111.97 0.63 1.20 0.04

GBM_grid_1_AutoML_20190321_164505_model_2 35.22 0.49 1.88 0.12

GBM_5_AutoML_20190321_164505 28.05 0.37 1.42 0.08

GBM_grid_1_AutoML_20190321_164505_model_7 21.63 0.32 1.26 0.06

StackedEnsemble_BestOfFamily_AutoML_20190321_164505 6.12 0.29 2.20 0.12

StackedEnsemble_AllModels_AutoML_20190321_164505 5.47 0.27 2.21 0.13

GBM_4_AutoML_20190321_164505 6.49 0.21 2.11 0.13

GBM_grid_1_AutoML_20190321_164505_model_8 3.99 0.20 1.31 0.07

GBM_3_AutoML_20190321_164505 4.18 0.18 2.27 0.13

GBM_2_AutoML_20190321_164505 3.84 0.17 2.32 0.13

GBM_1_AutoML_20190321_164505 3.35 0.16 2.54 0.13

GBM_grid_1_AutoML_20190321_164505_model_6 3.84 0.14 1.20 0.11

GLM_grid_1_AutoML_20190321_164505_model_1 2.25 0.12 2.16 0.12

DeepLearning_grid_1_AutoML_20190321_164505_model_8 1.30 0.05 1.24 0.04

DeepLearning_grid_1_AutoML_20190321_164505_model_1 1.39 0.04 1.31 0.04

DeepLearning_grid_1_AutoML_20190321_164505_model_3 1.07 0.01 1.15 0.02

DeepLearning_grid_1_AutoML_20190321_164505_model_2 1.08 0.00 1.21 0.02

DeepLearning_grid_1_AutoML_20190321_164505_model_7 1.07 0.00 1.09 0.01

DeepLearning_1_AutoML_20190321_164505 0.71 0.00 0.80 0.01

Clyde_NN 3.01 0.17 2.35 0.14

Clyde_NN_Boosted_Tree 2.85 0.17 2.50 0.14

32© 2019 Clyde Analytics  www.clyde-analytics.com

AutoML Double Lift Test

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

GBM_grid_1_AutoML_20190321_164505_
model_2

response auto_ML_pred clyde_pred

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10

StackedEnsemble_BestOfFamily_AutoML_2
0190321_164505

response auto_ML_pred clyde_pred

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

StackedEnsemble_AllModels_AutoML_201
90321_164505

response auto_ML_pred clyde_pred

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10

GBM_4_AutoML_20190321_164505

response auto_ML_pred clyde_pred

33© 2019 Clyde Analytics  www.clyde-analytics.com

AutoML Generalization Performance

Sample
Gini Rank

Correlation
Max Gini Valid Line of Business Model Response

Dataset 1 38.50% 0.13 PPA COLL Loss Ratio

Dataset 2 68.24% 0.54 Comm Prop Pure Prem

Dataset 3 -5.64% 0.07 HO All Perils Loss Ratio

Dataset 4 46.75% 0.13 PPA All Coverages Loss Ratio

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

G
in

i V
al

id
 R

an
k

Gini Train Rank

Dataset 1

Dataset 2

Dataset 3

Dataset 4

34© 2019 Clyde Analytics  www.clyde-analytics.com

• AutoML can successfully perform the following tasks:

➢ Construct and select appropriate features

➢ Select an appropriate model family

➢ Optimize model hyperparameters

➢ Postprocess machine learning models

• Relatively easy to use out of the box, decent default settings for some algorithms, such as GBM

• Produced (some) models with good performance

• Human expert still needed to inspect results for reasonableness and select the final model

• AutoML generates a large number of hypotheses, danger of “overfitting the validation data”

• AutoML performance depends on difficulty of problem, e.g. ground-up vs. residual analysis

• When in doubt, and with no prior knowledge about the domain, select a “middle-performing” model, not top

models, to ensure better expected generalization performance

• Human experience plus customized algorithms in a custom pipeline can outperform AutoML

Conclusions

