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AGENDA

• “Quadrant Saddles”

• The Tweedie Distribution

• Modeling sparse claim types

• Driver Averaging

• Geographic risk
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AGENDA
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1 QUADRANT SADDLES
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INTERACTIONS
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INTERACTIONS
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• Because that’s how the factors behave

• Because the multiplicative model can go wrong at the edges

• 1.5* 1.4 * 1.7 * 1.5 * 1.8 * 1.5 * 1.8 = 26!
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WHY ARE INTERACTIONS PRESENT?
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INTERACTIONS
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INTERACTIONS
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INTERACTIONS
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EXAMPLE
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EXAMPLE
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EXAMPLE
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INTERACTIONS
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SADDLES
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SADDLES
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SADDLES
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SADDLES
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SADDLES
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SADDLES
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SADDLES
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SADDLES
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SADDLES
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SADDLES
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SADDLES- MODEL COMPARISON
AUTO FREQUENCY – OUT OF SAMPLE
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SADDLES- MODEL COMPARISON
AUTO FREQUENCY – OUT OF SAMPLE

2 THE TWEEDIE DISTRIBUTION
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TWEEDIE GLMS

Raw pure premiums
• Incurred losses have a point  mass at zero and then a

continuous distribution
• Poisson and gamma not appropriate here
• Tweedie distribution has

• Point mass at zero
• A parameter which changes shape above zero

TWEEDIE GLMS

; , λ, = ∑ ( )! exp [ − κ ] for y>0= 0 = exp − κ
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FORMULIZATION OF GLMS

Observed
Response

Most
Appropriate

Link Function

Most Appropriate
Error Structure

Variance
Function

- - Normal µ0

Claim Frequency Log Poisson µ1

Claim Severity Log Gamma µ2

Claim Severity Log Inverse Gaussian µ3

Raw Pure Premium Log Tweedie µT

Retention Rate Logit Binomial µ (1-µ)

Conversion Rate Logit Binomial µ (1-µ)
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• More formally:

• Tweedie’s Variance function:
• p=1      Poisson
• p=2      Gamma
• 1<p<2   Poisson/Gamma process

• Other concerns
• Need to estimate both & p when fitting models
• Typically p ~= 1.5 for incurred claims
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FORMULIZATION OF GLMS

= ( ̂)
Scale parameter

Prior weights

Variance function
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EXAMPLE 1

Vehicle Age - Frequency
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EXAMPLE 1

Vehicle Age - Severity
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EXAMPLE 1

Vehicle Age – Pure Premium
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EXAMPLE 1

Vehicle Age – Pure Premium
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EXAMPLE 2

Gender - frequency
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EXAMPLE 2

Gender - frequency
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EXAMPLE 2

Gender - severity
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EXAMPLE 2

Gender - severity
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EXAMPLE 2

Gender – pure premium

• Helpful when it’s important to fit to loss cost directly

• Similar results to frequency/severity traditional approach if frequency and severity effects are clearly

weak or clearly strong

• Distorted by large insignificant effects

• Removes understanding of what is driving results

• Smoothing harder
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TWEEDIE GLMS

3 MODELING SPARSE
CLAIM TYPES
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• Fit straight to BI

• Use PD model as a guide in free fitting BI

• Use PD model structure

• Offset PD relativities onto BI data as starting point

• BI/PD proportion model:

• BI frequency = BI/PD proportion * PD frequency
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AMPLIFICATION OF THE BI SIGNAL USING PD EXPERIENCE

More Data

Less Data
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PROPORTION MODEL

BI Freq BI SevX

PD Freq PD SevX

Liab
Freq

BI
Propensity

BI Sev

PD Sev

X X
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REFERENCE MODELS
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REFERENCE MODELS
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REFERENCE MODELS
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REFERENCE MODELS



03/06/2018

17

49

REFERENCE MODELS
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REFERENCE MODELS
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REFERENCE MODELS
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REFERENCE MODELS

Offset Term

• When modeling BI, set PD fitted values to be offset term
• GLM will seek effects over and above assumed PD effect
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EXPERIMENT
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EXAMPLE RESULT
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EXAMPLE RESULT

4 DRIVER AVERAGING

• Historically companies assigned operators to vehicles for the purpose of rating
• More recently driver averaging strategies have been deployed to capture the

household
• Average may consider all drivers or a subset

• This choice may affect other household composition factors
• Modeling data needs to mimic the transaction
• Types of averages

• Straight vs. geometric average
• Weighted average
• Modified
• Average/assigned hybrid

57

HOUSEHOLD AVERAGING

To
pi

c 
1
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DRIVER ASSIGNMENT
DRIVER AVERAGING VS DRIVER ASSIGNMENT

• There is a one-to-one mapping of drivers
to vehicles

• Assigned driver characteristics can be
considered a vehicle characteristic

• Downstream tables do not need driver ID
as a key

• Standard vehicle exposure is used
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DRIVER AVERAGING
DRIVER AVERAGING VS DRIVER ASSIGNMENT

• There is a unique record for each driver-vehicle combination
• Characteristics of each driver is used for each combination
• Exposures for each vehicle are split amongst the number of drivers on the

policy, i.e., annualized exposures / # drivers

Vehicle Operator Vehicle
Rate

V1 Dad $500
V2 Mom $450
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MODEL DESIGN

Operator Class
Factor

Dad 0.80
Mom 0.85
Junior 2.80

• In all modeling projects, it is imperative that the data set up mimic the rating
structure

• Consider the following example…

• Assume Mom had a $1,000 claim while driving Dad’s car
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Veh Op Sym MYR Age Sex Type Yths Drvrs Vehs Exp Clm Losses Prem
V1 Junior 17 2006 16 M OO 1 3 2 1 1 1,000 1,400
V2 Mom 17 2005 43 F PO 1 3 2 1 0 0 382
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ASSIGNMENT

In driver assignment methodology, each record represents a single vehicle with
one assigned operator

• Operator characteristics based on assigned operator
• Vehicle characteristics based on vehicle
• Policy characteristics “catch” other drivers
• Losses assigned to vehicle
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STRAIGHT AVERAGE

ℎ × ( 1 + 2 + 3 )3
ℎ × ( 1 )3ℎ × ( 2 )3ℎ × ( 3 )3

• Straight average methodology:

• Which can be deconstructed::

Veh Op Sym MYR Age Sex Yths Drvrs Vehs Exp Clm Loss Prem
V1 Dad 17 2006 45 M 1 3 2 1/3 0 0 133
V1 Mom 17 2006 43 F 1 3 2 1/3 1 1,000 141
V1 Junior 17 2006 16 M 1 3 2 1/3 0 0 467
V2 Dad 17 2005 45 M 1 3 2 1/3 0 0 120
V2 Mom 17 2005 43 F 1 3 2 1/3 0 0 127
V2 Junior 17 2005 16 M 1 3 2 1/3 0 0 420
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STRAIGHT AVERAGE

In straight average methodology, each record represents a single vehicle and
operator combination

• Policy characteristics are same, but less predictive
• Driver exposure split amongst each vehicle
• Losses assigned to vehicle/operator combination
• iid is a major concern
• No clear solution for comprehensive coverage
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GEOMETRIC AVERAGE

Geometric average methodology:

ℎ × (1 + 2 + 3 ) /
No direct decomposition

Veh Sym MYR # Dads # Moms # Juniors Exp Clm Loss Prem
V1 17 2006 1/3 1/3 1/3 1 1 1,000 619.72
V2 17 2005 1/3 1/3 1/3 1 0 0 557.74
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GEOMETRIC AVERAGE

Geometric methodology: each record represents a single vehicle

• Policy characteristics are same, but less predictive
• Predictors are translated to counts
• Losses assigned to vehicle
• More challenging to add operator interactions or variates
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WEIGHTED AVERAGE

Veh Op Sym MYR Age Sex Type Yths Drvrs Vehs Exp Clm Loss Prem
V1 Dad 17 2006 45 M PO 1 3 3 1/3 0 0 133
V1 Mom 17 2006 43 F OC 1 3 3 1/3 1 1,000 141
V1 Junior 17 2006 16 M OC 1 3 3 1/3 0 0 467
V2 Dad 17 2005 45 M OC 1 3 3 1/3 0 0 120
V2 Mom 17 2005 43 F PO 1 3 3 1/3 0 0 127
V2 Junior 17 2005 16 M OC 1 3 3 1/3 0 0 420

Weighted average methodology for a straight average approach

• Creates a relationship between the vehicle and the operator
• Uses the model to determine the weights
• More accurate since it uses more information…if correctℎ 1 × ( 1 ∗ + 2 ∗ + 3 ∗ )3
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5 GEOGRAPHIC RISK
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TERRITORIAL BOUNDARY/RELATIVITY ANALYSIS

• Location is critical as a major risk driver and accounts for a substantial
portion of the variation in insurance risk

• Two elements:
• Segmentation of the risk (territorial boundaries)
• Quantification of the risk (territorial relativities)

• Historically, the market focus has been on relativities
• Initial boundaries typically based on limited data, anecdotal evidence,

competitors, bureaus, and judgment
• Regular reviews of relativities, while merely tweaking the boundaries

when necessary

• Grouping difficult to evaluate
• Cannot “order” geographic units, so curves not an option
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STANDARD DIMENSION REDUCTION TECHNIQUES FALL SHORT
HIGH DIMENSIONAL CATEGORICAL VARIABLES
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SOLUTION 1: USE PROXIES

• Proxies attach at the code level

• High-dimensional, but ordered; so we can fit
curves

• Geo-demographics such as:

• Population density

• Crime rate
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HOW TO DETERMINE RIGHT PROXIES (OR COMBINATIONS THEREOF) HAVE
BEEN USED?

PROBLEM WITH PROXIES ONLY

• How to determine the right proxies (or combinations thereof) have been used?

1. Include proxies in GLM
2. Then apply geo-spatial smoothing
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SOLUTION 2: USE PROXIES WITH SPATIAL CORRECTION
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GEOGRAPHIC ESTIMATOR

Initial Estimator:

• Component models built using geographic proxies
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SPATIAL CORRECTION APPROACH

Non-code
related factors

Code related
factors (geo-

dems)

Residual

Observed Data
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SPATIAL CORRECTION APPROACH

Non-code
related factors

Code related
factors (geo-

dems)

Smoothed
Residual

Total geographical
segmentation

Effect
modeled in

GLM

NoiseSpatial
smoothing

extracts
additional signal

Residual
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SPATIAL CORRECTION APPROACH

Non-code
related factors

Code related
factors (geo-

dems)

Residual
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MAPPING THE RESIDUALS

• View the residuals graphically

Residual
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SPATIAL SMOOTHING METHODS

• Uses knowledge of surrounding areas to enhance estimates of the underlying risk
in each area based on the “Principle of locality”

Distance-based

• Simpler to implement and interpret

• Does not consider natural boundaries such as rivers

• May over-smooth urban areas and under-smooth rural

• Best peril uses: windstorm

Adjacency-based

• Distribution assumptions about claims process can be incorporated

• Distance can be built in

• Considers natural boundaries

• Potential lines: auto, HO theft
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• View the residuals graphically
• Are there any patterns?
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SMOOTHING THE RESIDUALS

• View the residuals graphically
• Are there any patterns?
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SMOOTHING THE RESIDUALS

• View the residuals graphically
• Are there any patterns?
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SMOOTHING THE RESIDUALS
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• View the residuals graphically
• Are there any patterns?
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SMOOTHING THE RESIDUALS
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TERRITORIES

Clustering
• Cumulative geographic signal clustered into territories
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DETERMINING TERRITORIAL RELATIVES

• GLM model fit using data grouped by new territorial boundaries
• Test relativities using standard GLM tests

• Predictive in GLM
• Consistent over time

• Refine boundaries/relativities as appropriate
• Incorporate rules-based restrictions
• Apply actuarial knowledge
• Investigate neighboring territories with very different relativities

Territory
Boundaries

Territory
Relativities
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TERRITORY RATING - OVERVIEW

• Accurate estimation of underlying risk associated with geography is a three stage process

• Territory is a major driver of risk, thus it is critical that companies review boundaries and relativities

regularly

• Issues exist that create special challenges with regards to territorial analysis

• High-dimensionality

• Heavily correlated

• Territory boundary analysis requires a range of different approaches and tools (as there are different

loss drivers)

• Diagnostics needed to ensure best model possible
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SUMMARY
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