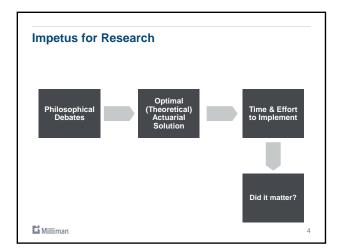
C Millimen


Predictive Modeling Loss Assumptions:

What's the Impact?

CAS RPM Seminar Eric Krafcheck, FCAS, MAAA, CSPA Consulting Actuary Katie Pipkorn, ACAS, MAAA Associate Actuary March 20, 2018

Overvi	9W	
1	Background	
2	Adjustment Methodologies	
3	Research Results	
🕻 Milliman		2

Why care?

Most Theoretically Sound Methodology = Optimal Solution? - Little guidance in actuarial literature

Actuaries vs Data Scientists

Issue commonly ignored for sensitivity testing of model

Scientific integrity

ASOPs

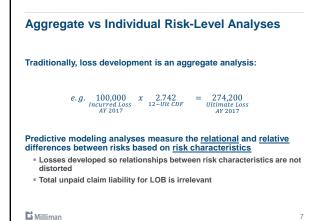
- ASOP 12, Risk Classification
- No guidance
- ASOP 43, Unpaid Claim Estimates, §3.6.1

"The actuary should consider methods or models for estimating unpaid claims that, in the actuary's professional judgment, are appropriate...The actuary should consider whether a particular method or model is appropriate in light of the purpose, constraints, and scope of the assignment."

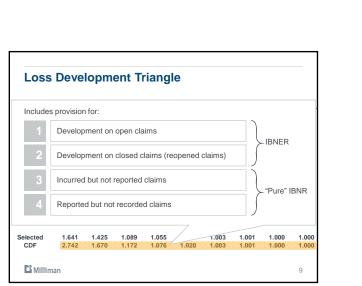
Scope: "...exclusive of estimates developed solely for ratemaking purposes."

C Milliman

Why care? (cont.)

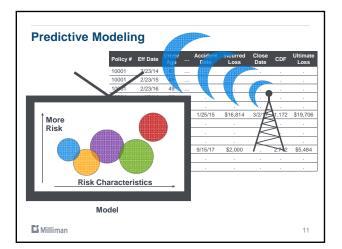

ASOPs

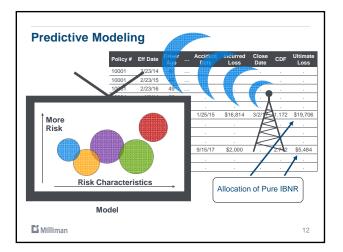
- ASOP 53, Estimating Future Costs for Prospective Property/Casualty Risk Transfer and Risk Retention (effective 8/1/18)


 §3.5: "The actuary should use methods or models, along with reasonable assumptions, that, in the actuary's professional judgment, flave no known significant bias in the aggregate relative to the intended measure."

 §3.9.0: "The actuary behad experided or divide biblicities! down on the actuary should use to be intended measure."
- significant bias in the aggregate relative to the intended measure." § 3.8.2. "The actuary should consider adjusting historical data using methods or models, along with reasonable assumptions, that, in the actuary's professional judgment, reflect the ultimate value of the loss and loss adjustment expense. The actuary should also consider the following:
 - a) The coverage being evaluated;
 - Intercept of analysis (such as overall future cost level analysis or risk classification analysis); and The type of analysis (such as overall future cost level analysis) or risk classification analysis); and The differences between the future period and the historical conditions under which the historical claims occurred, the claims were adjusted, and the olisims reserves were set."
- §3.8.3: "The actuary should consider past and prospective changes in claim costs, claim frequencies, exposures, and premiums."

C Milliman


Loss	Deve	lopm	ent T	riang	le				
Accident				Months	of Develo	opment			
Year	12-24	24-36	36-48	48-60	60-72	72-84	84-96	96-108	<u>108-120</u>
2008	1.667	1.405	1.200	1.087	1.019	1.006	1.000	1.000	1.000
2009	1.719	1.527	1.149	1.078	1.023	1.000	1.000	1.000	
2010	1.371	1.696	1.183	1.035	1.015	1.000	1.002		
2011	1.700	1.471	0.974	1.023	1.004	1.005			
2012	1.689	1.260	1.222	1.035	1.021				
2013	1.304	1.557	1.060	1.081					
2014	2.088	1.235	0.959						
2015	1.905	1.576							
2016	1.417								
Avg	1.651	1.466	1.107	1.056	1.017	1.003	1.001	1.000	1.00
Wtd Avg	1.641	1.425	1.089	1.055	1.017	1.003	1.001	1.000	1.00
Wtd Avg L3	1.768	1.386	1.061	1.046	1.014	1.002	1.001		
Selected	1.641	1.425	1.089	1.055	1.017	1.003	1.001	1.000	1.00
CDF	2.742	1.670	1.172	1.076	1.020	1.003	1.001	1.000	1.00
C Millim	ian								8



	•	atase					
Policy #	Eff Date	Driver Age	 Accident Date	Incurred Loss	Close Date	CDF	Ultimate Loss
10001	2/23/14	47					
10001	2/23/15	48					
10001	2/23/16	49					
10004	4/2/14	30					
10004	4/2/15	31					
10005	11/28/14	62	 1/25/15	\$16,814	3/2/17	1.172	\$19,706
10005	11/28/15	63					
10005	11/28/16	64					
10009	8/24/16	20					
10010	7/16/17	25	 9/15/17	\$2,000		2.742	\$5,484
10011	4/24/15	42					
10012	9/1/16	23					

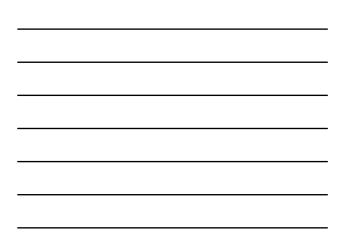
Extreme Example

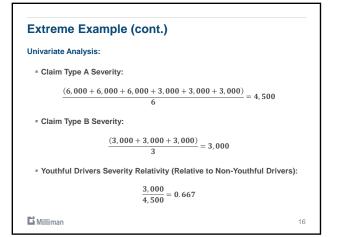
Assumptions

- Company XYZ has 2 claim types: Type A and Type B
- Only non-youthful drivers have Claim Type A Only youthful drivers have Claim Type B
- Reporting
- Claim Type A: always reported within 12 months
- Claim Type B: always reported between 12 and 24 months For both, 50% of ultimate reported when claim is reported and remainder reported the following year
- Severity
- ✓ Claim Type B's average severity is always 2x that of Claim Type A's
- Frequency ✓ Both claim types occur with equal frequency

🕻 Milliman

Extreme Example (cont.)

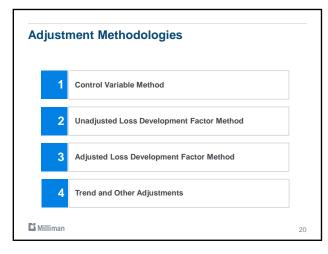

LDFs


C Milliman

- = 12-24 MOD LDF: 4.00 (= [100% + 2 x (50%)] / 50%)
- = 24-36 MOD LDF: 1.50 (= [100% + 2 x (100%)] / [100% + 2 x (50%)])
- = 12-Ult CDF: 6.00 (= 4.00 x 1.50)
- = 24-Ult CDF: 1.50

14

ns Data						
Claim #	AY	Claim Type	Incurred Loss	Open / Closed	CDF	Ultimate Loss
4	2017	A	1,000	Open	6.00	6,000
5	2017	A	1,000	Open	6.00	6,000
6	2017	A	1,000	Open	6.00	6,000
7	2016	В	2,000	Open	1.50	3,000
8	2016	В	2,000	Open	1.50	3,000
9	2016	В	2,000	Open	1.50	3,000
1	2016	А	2,000	Closed	1.50	3,000
2	2016	A	2,000	Closed	1.50	3,000
3	2016	А	2,000	Closed	1.50	3,000



Extreme Example (cont.) Claims Dataset (with Corrected LDFs)									
Claim #	AY	Claim Type	Incurred Loss	Open / Closed	Original CDF	Corrected CDF	Corrected Ultimate Loss		
4	2017	А	1,000	Open	6.00	2.00	2,000		
5	2017	A	1,000	Open	6.00	2.00	2,000		
6	2017	A	1,000	Open	6.00	2.00	2,000		
7	2016	В	2,000	Open	1.50	2.00	4,000		
8	2016	В	2,000	Open	1.50	2.00	4,000		
9	2016	В	2,000	Open	1.50	2.00	4,000		
1	2016	А	2,000	Closed	1.50	1.00	2,000		
2	2016	А	2,000	Closed	1.50	1.00	2,000		
3	2016	А	2,000	Closed	1.50	1.00	2,000		
Li Mil	lliman						17		

Extreme Example (cont.)	
Univariate Analysis (Corrected):	
- Claim Type A Severity:	
$\frac{(2,000+2,000+2,000+2,000+2,000+2,000)}{6} = 2,000$	
Claim Type B Severity:	
$\frac{(4,000+4,000+4,000)}{3} = 4,000$	
- Youthful Drivers Severity Relativity (Relative to Non-Youthful Drivers)	vers):
$\frac{4,000}{2,000} = 2.000$	
L Milliman	18

Control Variable Method

Include time as an explanatory variable in model

E.g. Policy year, accident year

Advantages

- Quick
- Easy to use
- No judgment required
- Accounts for both maturity and trend differences

Disadvantages

- Could possibly over-fit
- Doesn't allow judgment / expertise from user
- How to incorporate with machine learning algorithms?
- Limitations on validation design (e.g. last policy year in data)

C Milliman

Unadjusted Loss Development Factor Method

Use LDFs directly selected from loss development triangle

Advantages

- Easy to calculate
- Potentially readily available (ratemaking / reserving analyses)
- Doesn't require additional pure IBNR assumptions
- Allows user to incorporate judgment / expertise
- Can be used for machine learning techniques

Disadvantages

- Mismatch in allocation of IBNR
- Pure IBNR allocated to reported claims
- Closed and open claims may be over- or under-developed, respectively

22

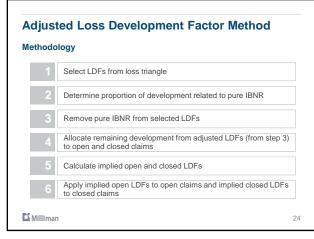
23

- More time-consuming to implement than control variable method
- Does not account for trend differences

Li Milliman

Adjusted Loss Development Factor Method

Adjust LDFs to remove pure IBNR, effectively applying separate open and closed development factors to open and closed claims


Advantages

- Most actuarially sound method (theoretically)
- Properly allocates development
 ✓ Pure IBNR excluded from analysis
 - Closed and open claims receive more appropriate development
- Allows user to incorporate judgment / expertise
- Can be used for machine learning techniques

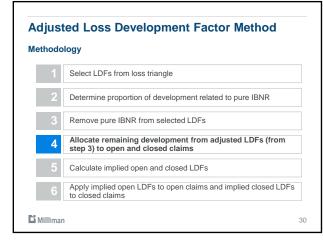
Disadvantages Time-intensive

- May require multiple additional assumptions
- Percent of development from newly reported claims Allocation of development on closed and open claims Are assumptions valid? How to verify?
- Does not account for trend differences

C Milliman

ethodo	ology
1	Select LDFs from loss triangle
2	Determine proportion of development related to pure IBNR
3	Remove pure IBNR from selected LDFs
4	Allocate remaining development from adjusted LDFs (from step 3) to open and closed claims
5	Calculate implied open and closed LDFs
6	Apply implied open LDFs to open claims and implied closed LDFs to closed claims

hodo	blogy
1	Select LDFs from loss triangle
2	Determine proportion of development related to pure IBNR
3	Remove pure IBNR from selected LDFs
4	Allocate remaining development from adjusted LDFs (from step 3) to open and closed claims
5	Calculate implied open and closed LDFs
6	Apply implied open LDFs to open claims and implied closed LDFs to closed claims


ethodo	logy
1	Select LDFs from loss triangle
2	Determine proportion of development related to pure IBNR
3	Remove pure IBNR from selected LDFs
4	Allocate remaining development from adjusted LDFs (from step 3) to open and closed claims
5	Calculate implied open and closed LDFs
6	Apply implied open LDFs to open claims and implied closed LDFs to closed claims

Step 3: Remove Pure IBNR from Selected LDFs

Subtract proportion of development attributable to pure IBNR from selected LDFs

		12-24	24-36	36-48	48-60
(1)	Selected LDF	3.500	2.100	1.250	1.115
(2)	Selected Reported Development Factor	2.250	1.050	1.010	1.002
(3)	% of Development Attributed to Pure IBNR	50.00%	4.55%	4.00%	1.74%
(4)	Adj LDF (Net of Pure IBNR)	2.250	2.050	1.240	1.113
(3) =	From Claim Count Triangle Select [(2) - 1] / [(1) - 1] [(1) - 1] * [1 - (3)] + 1	tions			
F \$4	Ailliman				29

Step 4: Allocate Remaining Development to Open / Closed Claims

Calculate development implied by LDFs from previous step
 Select portion of development to allocate to open / closed claims
 Multiply the implied development by the selected allocation

🕻 Milliman

31

Step 4: Allocate Remaining Development to Open / Closed Claims

		12-24	24-36	36-48	48-60
(1)	Selected LDF	3.500	2.100	1.250	1.115
(2)	Selected Reported DF	2.250	1.050	1.010	1.002
(3)	% of Development Attributed to Pure IBNR	50.00%	4.55%	4.00%	1.74%
(4)	Adj LDF (Net of Pure IBNR)	2.250	2.050	1.240	1.113
(5)	Incurred Loss	1,000	3,500	7,400	9,250
(6)	Implied Development	1,250	3,675	1,776	1,045
(7)	% Allocated to Open	90%	95%	100%	100%
(8)	% Allocated to Closed	10%	5%	0%	0%
(9)	Development on Open	1,125	3,491	1,776	1,045
(10)	Development on Closed	125	184	0	0
(6) =	[(4) – 1] x (5)	VIII	(9) = (6) x (7)		
(7), (8	 based on input from Claims and judgr 	nent	(10) = (6) x (8)		
См	illiman				32

lethodo	ology
1	Select LDFs from loss triangle
2	Determine proportion of development related to pure IBNR
3	Remove pure IBNR from selected LDFs
4	Allocate remaining development from adjusted LDFs (from step 3) to open and closed claims
5	Calculate implied open and closed LDFs
6	Apply implied open LDFs to open claims and implied closed LDFs to closed claims

Step 5: Calculate Implied Open and Closed LDFs

Implied Open LDF:

 $=\frac{Allocated Incr Open Dev_{MOD} + Incurred Loss on Open Claims_{MOD-12}}{Open Dev_{MOD} + Incurred Loss on Open Claims_{MOD-12}}$ Incurred Loss on Open $Claims_{MOD-12}$

Implied Closed LDF:

 $= \frac{Allocated Incr Closed Dev_{MOD} + Incurred Loss on Closed Claims_{MOD-12}}{Claims_{MOD-12}}$ Incurred Loss on Closed $Claims_{MOD-12}$

Select and smooth development patterns

Verify implied development from Open and Closed LDFs reconciles to total implied development

🕻 Milliman

Anthendalaran				
lethodo	моду			
1	Select LDFs from loss triangle			
2	Determine proportion of development related to pure IBNR			
3	Remove pure IBNR from selected LDFs			
4	Allocate remaining development from adjusted LDFs (from step 3) to open and closed claims			
5	Calculate implied open and closed LDFs			
6	Apply implied open LDFs to open claims and implied closed LDFs to closed claims			

Trend Factors

Accounts for differences in cost-levels and / or claim frequencies

Advantages

- Easy to calculate
- Potentially readily available (ratemaking / reserving analyses)
- Allows user to incorporate judgment / expertise
- Can be used for machine learning techniques

Disadvantages

- More time-consuming to implement than control variable method
- By itself does not account for differences in maturity

Ci Milliman

36

Other Adjustment Techniques

Exposure / Weight Adjustments

- For greener years, judgmentally adjust weight
- Reduces "credibility" of observations
- Allows for incorporation of more recent experience Does not correct for misallocation of IBNR

Allocation of IBNR to individual claim-level

✓ IBNR-to-case ratios, etc.

Other techniques?

🕻 Milliman

37

Design

Evaluated 19 loss cost / severity models & 10 frequency models (GLMs) Homeowners: = Auto:

~	Fire	\checkmark	Bodily Injury
\checkmark	Hail	\checkmark	Property Damage
\checkmark	Liability	\checkmark	Collision
\checkmark	Theft	\checkmark	Comprehensive
\checkmark	Water		
\checkmark	Wind / Lightning		
For e	ach model, ran with various loss	s a	ssumptions:
= Ur	nadjusted incurred loss and ALAE		
= Ur	nadjusted incurred loss and ALAE v	vith	Policy Year cor

- ear control variable Developed and trended loss and ALAE (with unadjusted LDFs)
- Developed and trended loss and ALAE (with pure-IBNR adjusted LDFs)

C Milliman

Design (cont.)

Compared results

- Diagnostics / Goodness-of-Fit measures
- Lift charts
- Distribution of change in predicted (relative to base scenario)
- Indicated estimates (i.e. relativities)

Areas assessed

- Variable selection process
- Fit
- Predictiveness
- Model estimates

🕻 Milliman

Additional Details / Qualifications Control variable Maturity of datasets

C Milliman

41

40

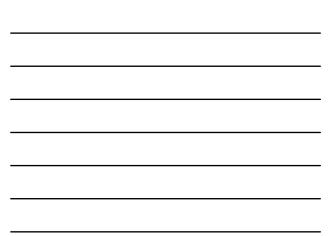
Initial Hypotheses

1) Control variable method will over-fit

2) Most predictive model: Adj LDF Method

3) Differences most notable in longer-tailed coverages / perils / LOB


4) Differences most notable when less data available


🕻 MIIIman

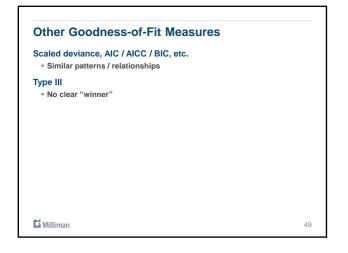
act is minimalunle Considering Type III tes /ariable Selection Impa	-	
	Loss Cost / Severity Models	Frequency Models
No Impact	42%	80%
Minimal Impact	42%	20%
Significant Impact	15%	0%
	variables potentially affected variables affected or convergen oss variable	nce issues

Deviance (% Change Relative to Base Scenario)

Incurred Loss

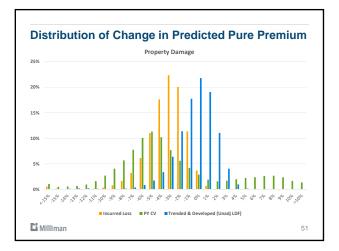
	All Models	Long- Tailed Models	Short- Tailed Models	Sufficient Data Models	Thin Data Models
Mean	3.9%	7.5%	1.9%	0.6%	8.4%
Standard Deviation	7.0%	9.9%	4.1%	4.0%	7.9%

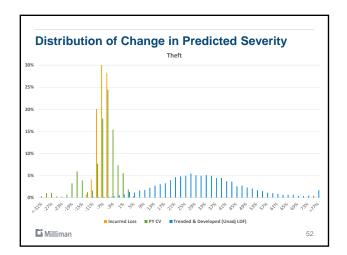
46


*Excludes frequency models	

🕻 Milliman

olicy Year	Control Varia				
	All Models	Long- Tailed Models	Short- Tailed Models	Sufficient Data Models	Thin Data Models
Mean	8.4%	20.4%	1.8 %	0.5%	19.0%
Standard Deviation	24.0%	39.4%	4.1%	4.0%	35.2%


Deviance (% Change Relative to Base Scenario) Trended + Developed (Unadjusted LDFs)					
	All Models	Long- Tailed Models	Short- Tailed Models	Sufficient Data Models	Thin Data Models
Mean	2.5%	-4.5%	6.4%	4.5%	-0.1%
Standard Deviation	12.3%	18.6%	5.2%	5.4%	18.5%
Excludes freque	ncy models				4



Gini Index

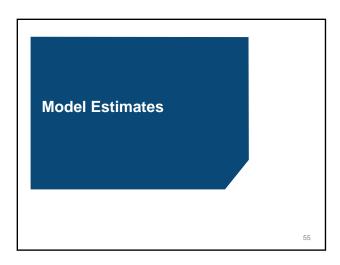
Compared relative to trended + developed (adjusted LDFs) model • Training and holdout bases

No general consensus...

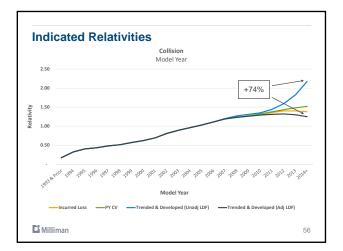
- PY Control Variable
- Measured on a training basis: PY Control Variable performed better
- Measured on a holdout basis: mixed
 Trended + Developed (Unadjusted LDFs)
- Mixed results

...However

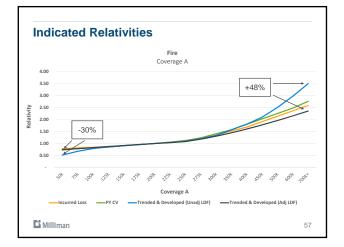
 Relative measure tended to decrease from training to holdout bases for long-tailed / thin data models

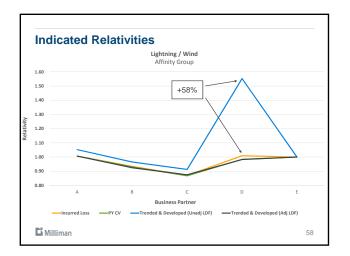

C Milliman

Holdout Lift Charts


Compared on an SSE and "visual" basis

No general consensus


🕻 Milliman



Summary

1) Impact on variable selection is potentially minimal.

2) Impact varies by length of tail.

3) Impact varies by volume of data.

4) Potentially significant differences in predicted values and / or model estimates.

5) No clear "winner," but unadjusted LDFs tend to lead to more extreme results.

Conclusion: sensitivity testing important!

🖬 Milliman

Additional Considerations

Small sample size

Results impacted by reserving practices of Claims department

Data availability for LDFs

Potential for abuse

 Loss assumptions should not be selected to achieve a desired outcome (e.g. steeper credit curve, etc.)

🕻 Milliman

61

Ci Milliman

Thank you!

eric.krafcheck@milliman.com (262) 796-3334 katie.pipkorn@milliman.com (262) 923-3661