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Who's interested in what?
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Applications of machine learning in the insurance sector
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This is not new....

Data enrichment GLMs in demand models Integrating cost and demand
Few fad&'slj simple GLMs in auto risk models GLM refinement & LOB expansion More data enrichment
methods
1990s 2000s 2010s 2018

Other “Non-GLM” models .
Distributed Data Machine Integrated
Big Data isualisat
visualisation learning envionments

storage/ tools and services
Hadoop

Free software Data stream

NoSQL environments, and real-time

databases analytics processing
libraries o supporting loT _4

Hyper scale
[EEUE
computing
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What are these machine learning methods?

R ; Gradient
E bl Classifications “Earth Regression Boostin
Sl Trees Trees ing
Machines
K-nearest . Neural A. Random
Neighbors FESIINEE Networks NS (FE3ES Forests

Principal

K-Means Support Vector Ridge
Clusterin GRS Lasso l\elgchines Re regsion
9 Analysis 9
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Is it really all about the method?

Factor
engineering

& response
variables
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Is it really all about the method?
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Is it really all about the method?
Data
Physical facticity Mechanical nature
E.g., height, length, weight E.g., engine size, fuel type
Qualitative descriptors Performance
E.g., body type, model range E.g., maximum speed, torque, BHP
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Is it really all about the method?

Factor
engineering

& response

variables
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Is it really all about the method?
Response selection

“Insurance risk”

Simple
. guessed
bodily injury algorithm

“Compensation
risk”

EiE NN -
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Is it really all about the method?
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How do you know if a method works?

AIC

Gini RMSE

MAE
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How do you measure value?

Data Gain Curve

Gini

orais

Cumulative Weight(®)

= Rank hold out observations by their fitted values (high to low)

= Plot cumulative response by cumulative exposure

= Abetter model will explain ahigher proportion of the response with alower proportion of exposure
= ..andwill give a higher Gini coefficient (yellowarea)
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But...

= Think of a model...
Multiply it by 123

= Square it

Add 74%: billion

= ...and you get the
same Gini coefficient!
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Double lift chart
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Financial value estimate

= Errors in insurance pricing are not symmetrical
= Financial benefit can be estimated

Example results redacted from printed version

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential For Wills Towers Watson and Wills Towers Watson clent use only WillisToweysWalson LI'I'll 18

3/19/2018



Is there more to it...?

Predictive power
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Choosing a method

Dimensions of choice
Predictive power

Analytical
time and Interpretation
effort

Method

Table
implementation

Execution speed
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Analytical
time and Interpretation

Table

SO e Implementation
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What do you use where?
L
nmn
0 i
1111
- |
Data science Domain experts
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It's domain expertise that helps decide

Data science

/////// ///////,;;',;;7

iy

Domain experts
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Some machine learning methods

U . Gradient
Ensembles GBS “Earth” REgCSsIE Boostin
Trees Trees ing
Machines
K-nearest q Neural " Random
Neighbors FESIINEE Networks NS (FE3ES Forests
K-Means Rucie Support Vector Ridge
Clusterin GRS Lasso I\F/)Igchines Re regsion
9 Analysis 9
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Focus on Trees
Classifications Regression
Trees Trees
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Decision Trees

Group

Age
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Decision Trees

Group

Age
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A simple Tree example

Free rostiite

e St Vo iepdiua tr e o Trom gzofizeldl  emo mm Voo coolime

e Lt gty e e Toag Dupiimady
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A simple Tree example

Tree resulis
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A simple Tree example

Free rostiite

e Pty e
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A simple Tree example
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Shortcomings of using trees

They may miss interactions...

... they may struggles with
Tl categorical variables....
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Predictive power

Analytical
time and Interpretation
effort

Decision

Trees

Execution speed
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Some machine learning methods
. 3 ; Gradient
Classifications " N Regression :
Ensembles Trees Earth Trees Boos_ung
Machines
K-nearest . Neural A. Random
Neighbors FESIINEE Networks NS (FE3ES Forests
Principal .
Clustering Componeris Lasso Hecnines [
g Analysis 9
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Focus on Random Forests

Random
Forests
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Random Forests

Tree 1: Prediction 1= + Noise 1
Tree 2: Prediction 2= + Noise 2
Tree 3: Prediction 3= + Noise 3
Tree 1000: Prediction 1000 = +Noise 1000

Random Forest:
Prediction =AVERAGE(Tree Predictions)

AVERAGE(Tree Noise)

= Average Noise = Oifthe trees are independent
= Independence of trees achieved by fitting each tree to:
= Random subset of data (bootstrap sample)
= Random subset of factors
. , provided trees are complex enough to represent it
= Thisis bagging (bootstrap aggregation) — fit lots of independent models and take an average

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential For Wills Towers Watson and Wills Towers Watson clent use only Willis Towexs Walson KiI*Ilil
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A simple Random Forest example

Random Forest results: iteration 1

T
[y

020
e
— e T ] - v — Trme — = Troe - TrE — e
- - e B - Trwe - Trag 10 1171107 ] 11417 e
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A simple Random Forest example

Random Forest results: iteration 2

- - e - a - i — T
- - B 9 2 10 e 7110 ] 16 e A rage Trpnict
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A simple Random Forest example

Random Forest results: iteration 3

gl

- = Trwe3 -

«B - T ) - -
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A simple Random Forest example

Random Forest results: iteration 5

0,80

020

WillisTowers Walson Lil'I'lil 40
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A simple Random Forest example

Random Forest results: iteration 10
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Interpretation

Random
Forest

Table
Implementation

Execution speed
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Some machine learning methods

E bl Classifications Regression E?(;igltﬁ?t
Bl Trees Trees ting
Machines
K-nearest q Neural " Random
Neighbors ElaSIEE Networks INETRS [EEYSS Forests

Principal
K-Means
r Components
Clustering Analysis

Support Vector Ridge
Machines Regression
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Focus on Gradient Boosting Machines

Gradient

Boosting

Machines
208 s o Wasn A8 st Pty s o il o et Wi T tsn i WilisTowers Walson Bl 44

3/19/2018

22



Gradient Boosted Machine or “GBM”

Atree

fi(x%)

A GBM

N
f0 =20, fil
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Four main assumptions

= )X Learning rate / “shrinkage”
= Amount by which the old model
predictions are varied for the next model
iteration
= New model =
Old + (Prediction x Learning rate)
= Interaction depth
= Number of splits allowed on each tree
(or the number of terminal nodes — 1)
= N Number of trees (iterations) allowed
= Bag fraction
= Trees are fitted to a subset of the data
(the bag fraction) on a randomized basis
= Additional noise-reduction can be
achieved by using a random subset of
the available factors at each iteration

| Group < 15? I I

Y

N
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A simple GBM example

GBM results at iteration 0
12

= #factors = 1

= Interaction depth = 1
05 = Learning rate = 10%

= Bag fraction = 100%

0.8

04

0.2

0.2

04

06

— = Curentresiduals === Underlyingtrend e Current fitted vales
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A simple GBM example

GBM results at iteration 0
12

08
0.6
04

0.2

0.2

0.4

06

— = Cumentresiduals Model trained on current residuals == Underlying trend

= Current fitted values
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A simple GBM example

GBM results at iteration 0

0.2

04

06

= = Current residuals Model trained on current residuals

Inaremental model update  emmm=Underlying trend = Current fitted values
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A simple GBM example

GBM results at iteration 1
12

08
0.6
04

0.2

0.2

0.4

06

— = Cumentresiduals == Underyingtrend = Current fitted vakes

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential For Wills Towers Watson and Wills Towers Watson clent use only

WillisTowers Walson Lil'I"lil

50

3/19/2018

25



A simple GBM example

GBM results at iteration 1

12

0.8

06

04

0.2

0.2

04

06

— = Cumentresiduals Model trained on current residuals = Underlying trend

e Current fitted values
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A simple GBM example

GBM results at iteration 1

0.2

04

06

Model trained on current residuals

= = Current residuals

Incremental model update  emmm=Underlying trend = Current fitted values
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A simple GBM example

GBM results at iteration 2

0.2

04

06

= = Current residuals Model trained on current residuals Inaemental model update e Underlying trend = Current fited values
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A simple GBM example

GBM results at iteration 3
o

0.2

04

06

Model trained on current residuals

— = Current residuals Incremental model update  emmm=Underlying trend = Current fitted values
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A simple GBM example

0.2

04

06

= = Current residuals Model trained on current residuals

Inaremental model update  emmm=Underlying trend = Current fitted values
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A simple GBM example

GBM results at iteration 5

0.2

04

06

= = Current residuals Model trained on current residuals

Incremental model update  emmm=Underlying trend = Current fitted values
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A simple GBM example

GBM results at iteration 6

0.2

04

06

= = Current residuals Model trained on current residuals Inaemental model update e Underlying trend = Current fited values
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A simple GBM example

GBM results at iteration 7

0.2

04

06

— = Current residuals Model trained on current residuals Incremental model update  emmm=Underlying trend = Current fitted values

©2016 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wills Towers Watson clent use only

WillisTowers Walson Lil'I"lil

58

3/19/2018

29



A simple GBM example

GBM results at iteration 8

0.2

04

06

= = Current residuals Model trained on current residuals Inaemental model update e Underlying trend = Current fited values
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A simple GBM example

GBM results at iteration 9

0.2

04

06

— = Current residuals Model trained on current residuals Incremental model update  emmm=Underlying trend = Current fitted values
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A simple GBM example

GBM results at iteration 10

0.2

04

06

= == Current residuals Model trained on current residuals Inaemental model update e Underlying trend s Cument fitted values
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A simple GBM example

0.2

04

06

= = Current residuals Model trained on current residuals Inaemental model update

Underlying trend = Current fitted values
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A simple GBM example

0.2

04

06

= == Current residuals Model trained on current residuals Inaemental model update e Underlying trend s Cument fitted values

©2016 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wi Towers Watson clert use only. WillisToweys Walson LiI'I'lal 63

A simple GBM example

GBM results at iteration 40

0.2

04

06

= = Current residuals Model trained on current residuals Inaemental model update

Underlying trend = Current fitted values
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A simple GBM example

GBM results at iteration 50

0.2

04

06

= == Current residuals Model trained on current residuals Inaemental model update e Underlying trend s Cument fitted values
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A simple GBM example

GBM results at iteration 100

Z 8 9

0.2

04

06

= = Current residuals Model trained on current residuals Inaemental model update

Underlying trend = Current fitted values
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A simple GBM example

GBM results at iteration 200

12
1
08
06 R sara e B e e el
g P ervineathoaadh o gt
e L
0.4
02
P
1 2
02
04
06
— = Current residuals Model trained on current residuals Incremental model update Underlying trend = Current fited values
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A simple GBM example

GBM results at iteration 300

12
af
i
. 2
%
2
4
08 3
Q .
. S
P P QUENNE VB0
06 [P A R
0.4
0.2
PO
1
02
04
0.6
== == Current residuals Model trained on current residuals Incremental model update Underlying trend s Current fitted values
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A simple GBM example

GBM results at iteration 1,000

0.2

04

06

= == Current residuals Model trained on current residuals Incremental model update Underlying trend s Current fitted values
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Calibrating the assumptions

= n-fold cross validation used to develop the interaction depth and learning rate
assumptions
= Eg for 3-fold validation, split into 3, fit on purple, test on blue parts, take average

1 2

Fit Fit Test

Iw

Fit

Fit Test

Test Fit Fit

= Resulting plots can be used to determine the optimal assumption choice
= Including how many trees to run
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What does a GBM look like?

What does a GBM look like?
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What does a GBM look like?

i | | 1] 1] 1] 1} Ll
| I | I ., I | I I
i I | | i ¥ i § i
il Il il rl il | | i l
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. Ddes it Work?
= How does it work?

What about an automated GLM?
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= Does it work?
= How does it work?

Factor importance — relative influence

The relative influence of a factor can be measured as the total reduction in error attributable to
splits by that factor, across all trees in the GBM

Vehicle Group I
Vehicle Age  IN——
Driving Restriction - [IE—
Vehicle Value [ININGTN
Age of Main Driver [ININRNEG
Claim Free Years |GG
Rating Area [N
Age of Youngest Driver [N
Claim Free Year Protection |l
Age of Youngest Additional Driver [N
Payment Frequency [N
Deductible [l
Sole Driver 1l
Year of analysis [l
Driver and Spouse 1l
Gender of Youngest Driver [l
Minimum Licence Held Wl
Annual Mileage [l
Gender of Main Driver I
Credit Score ||
Use |
Number of Past Claims ||
Gender of Youngest Additional Driver |
Marital Status Main Driver |
Number of Vehicles |
Number of Drivers |
0
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Partial dependency plots

Example
014 7
g ] Use the model to make a
~§ ¢ | prediction for observation 1
5" (Factor = 10).
a
T) 008
©
o
S 006

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots

Example
016
. Vary the value of Factor only B
0141 R for observation 1 and make a i
RN range of alternative predictions. .7
gujz- ‘--\ﬂ\-- ",‘
K] Tre-lel AT
£ R S S SN U NN O S NSNS SO SO s ot it
2
a This gives the Individual
§ Conditional Expectation of
S oos | observation 1 across Factor.
002 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example

I Repeathra"obsenﬁMons.I

014 S -

008 |

Model Predictions

006 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example
Repeat for all observations
016
4.
014 7 ey
@V 012 >y ~\“-~
c ~ - _
S bt PN -
k= e
° -~
@ T~
g <
& --
-— 008
[
©
o
S 006
002 1
0 y T y T y T y T T y T y T T T T T T T 1
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots

Example
I Repeat for all observations. I
014 1 \N‘\\ ,4’
w012 { -~ \\“-_ ,‘/‘,’/
g S~ T~ _ e -
= Sl i S NI DS R N - - .
b e Y-kl Lo e
& S~l -~ - .
- 008 ~- T L e -l -l
[ ~-2 == -
- S~L_ -
<] ~~- A
= o006 i Py S =T

1 2 3 4 5 6 7 8 9 10 11 12 13
Factor

14 15 16 17 18 19 20
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Partial dependency plots
Example

Repeat for all observations.

014

008

Model Predictions

006 -

002

The full picture of the
variation in predictions for
all observations is the
Individual Conditional
Expectation (or ICE) plot.

1 2 3 4 5 6 7 8 9 10 11 12 13
Factor

14 15 16 17 18 19 20
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Partial dependency plots

Example
P & S Take the average prediction S
“:{j\\ for each level of Factor. el
w012 { -~ SS3
<
S
3
8. .
-3
[
a
T) 008
©
o
S 006
1 The average variation
o across the factor gives the
Partial Dependency Plot

0 t T T T t t t t T t T T t T T T T T T 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Factor
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Partial dependency plots
Example
016 =
JOPY B Take the average prediction Ll
< z
&5 -
Ss for each level of Factor.
a on
c
K]
= .
2 o1
©
9
%onr “‘~‘_\ i R S - —”/
o s~ _ A
<} —~a_ T
= o006 s e ST
1 The average variation
002 ] across the factor gives the
Partial Dependency Plot
0 U T u T u T U T T y T y T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots

Example

014 7

v 012

<

K]

-3

[

a

E 008

©

o

S 006
1 The average variation
o across the factor gives the

Partial Dependency Plot

0 t T t T t T T T T T T t T t t t t T t 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example

014

008

Model Predictions

006 -

002

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots
Example

Rebasing all lines to pass through
a single point gives a sense of the
interactions present in the model.

014

008 |

Centered Model Predictions

006 | This is a Centered
PDP/ICE plot
(c-PDP/c-ICE)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Factor
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Partial dependency plots
Example
016 | Coloring the c-ICE plots by each
observation’s value of a secondary
014 factor can help locate the interaction. S5

008

006 -

Centered Model Predictions

002

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Factor
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Partial dependency plots etc

Partial Dependency Plot - Age of Main Driver

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wi Towers Watson clert use only. Willis TowersWalson LI'I'lll 91

Partial dependency plots

Advantages

= Qualitative description of properties of
relationships

= Most revealing of additive and multiplicative
relationships

2
a0 30

Disadvantages
= “GLM view of a non-GLM thing”

= Interaction effects outside of the chosen
subset may be obfuscated

= egif X;X,is important and X, is averaged
out in the partial dependence plot, X; may
show as being heterogeneous, thus
obfuscating the complexity of the modelled
relationships
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So what?

Deploying GBMs

Factor
Reduction

. . . . Corner
Model down into multiplicative correctors e
- - stablis

tables via GLMs S Model

interactions Hierarchy
AgeTad | 281819 91 VG Torl | 26189 91 H H H
—— e Use insights to guide GLM
o -
rating .
- MaIn Paiicy
— crpine Admin By rim
F
|
. =
s Deploy directly
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Deploying GBMs

Pre / post
mapping

“Comfort
Diagnostics”

engine pamin By v
Deploy directly

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wi Towers Watson clert use only.
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Predictive power

Execution speed

Interpretation

Table

Implemens

Implementation
in modern
rating engines
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A interim summary...

M

Tble
Exeation peed

.@
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e
. AU 0% “5° ole 9,8
Machine Learning in Pricing 0;0
Conclusions :
(Part 1) % g
B L=

= There are many forms of ML models

= New data and feature/response engineering generally add more value than new methods
BUT we need to continuously explore which methods work on which problems

= Traditional measures of prediction value may not reflect applications in insurance

= And it's not all about predictive power anyway — other criteria are important

= GBMs can provide predictive lift benefits by capturing higher order effects ... BUT
= Can you cope with not seeing the model and instead use broad diagnostics
= Effortis required to expose/understand higher order effects in an expeditious manner
= How will business leaders and regulators respond to this method?
= Do you have the software and hardware to fit to large dataset
= Do you have a rating engine that can implement a GBM

= More methods and insights to follow in Part 2...
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What’s coming in Session 2?

9 knowledge of some machine learning

Context of machine learning in pricing

methods that may be used to improve
GLM results and/or offer valuable

insights in their own right in the field

Session 2:

“Earth”

Neural networks

Penalized regression
Generalized additive models

Conclusions

Q&A

of P&C insurance pricing

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wil Towers Watson clert use only.
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Questions
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3/19/2018

CAS Ratemaking Seminar:
Overview and Practical Application of
Machine Learning Methods in Pricing — Part 2

Wednesday March 21, 2018

Claudine Modlin, Graham Wright

©2018 Wilis Towers Watson. Al rights reserved. Wi I I is Towers Watson I.I n I n I.I

Agenda

knowledge of some machine learning
Context of machine learning in pricing methods that may be used to improve
GLM results and/or offer valuable
insights in their own right in the field

of P&C insurance pricing

Session 2: Please note that the on-site
“Earth” presentation will also include
Neural networks example results from particular
Penalized regression methods that will not be
Generalized additive models included in this printed version;

consequently, page numbers

Conclusions -
will differ.

Q&A
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This is not new....

Data enrichment

Few factors, simple
methods

1990s

GLMs in auto risk models

2000s

GLMs in demand models

GLM refinement & LOB expansion

2010s

Other “Non-GLM” statistical models Distributed

Big Data
storage/
Hadoop

Hyper scale
[EEUE
computing

NoSQL

Data
visualisation
tools

Free software
environments,
databases analytics

libraries

Integrating cost and demand
More data enrichment

2018

Machine Integrated
learning envionments
and services

Data stream
and real-time

processing
supporting loT _J
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What are these machine learning methods?

E bl Classifications “Earth Regression g{;igiﬁ?[
Sl Trees Trees ing
Machines
K-nearest . Neural A. Random
Neighbors FESIINEE Networks NS (FE3ES Forests
Principal .
Clustening Components Lasso Hecnines [
Analysis
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Choosing a method

Dimensions of choice
Predictive power

Analytical
time and Interpretation
effort

Table

Execution speed implementation
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It's domain expertise that helps decide

Data science /////// ///////,:;',;;7

Hiny

Domain experts
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Financial value estimate

= Errors in insurance pricing are not symmetrical
= Financial benefit can be estimated

Example redacted from printed version

©2018 Wills Towers Watson. Al ights reserved. Proprietary and Confidenial. For Wilis Towers Watson and Wills Towers Watson cient use only. Willis Towers Walson K"l
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Some machine learning methods

U . Gradient
Ensembl Classifications “Earth Regression Boostin
Sl Trees Trees ing
Machines
K-nearest q Neural " Random
Neighbors FESIINEE Networks NS (FE3ES Forests
K-Means Rucie Support Vector Ridge
Clusterin GRS Lasso I\F/)Igchines Re regsion
9 Analysis 9
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Focus on “Earth”

—
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Multivariate adaptive regression splines (“Earth”)
/'Mf
b s T ""H
AP EEEETY R R ERERGY AR A5 aSAT an R B RSV SR GAGNGT SR VI VR VE VT TR A8 5
Age
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Multivariate adaptive regression splines (“Earth”)
Categorical factors

-Interce-t -—2.95
DR=10D

>
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Driver Spouse Named Named 30+
Driving Restriction
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Multivariate adaptive regression splines (“Earth”)
Categorical factors
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Multivariate adaptive regression splines (“Earth”)
Categorical factors

DR=I1&1N
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Driving Restriction
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Multivariate adaptive regression splines (“Earth”)
Categorical factors
DR=1&2N
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Multivariate adaptive regression splines (“Earth”)
Categorical factors
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Multivariate adaptive regression splines (“Earth”)
Categorical factors
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Multivariate adaptive regression splines (“Earth”)

Numerical factors

AD claim frequency

Intercept
MAX(30-Age,0
MAX(Age-30,0

212325272931333537394143454749515355575961636567697173757779818385

-2.815|
0.051
-0.006

Age
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Multivariate adaptive regression splines (“Earth”)
Numerical factors
Intercept -2.931
MAX(40-Age,0) [ 0.025
MAX(Age-40,0) -0.003
>
o
o
Q
>
O
[}
o
£
=
K
o
[a)]
<
212325272931333537394143454749515355575961636567697173757779818385
Age
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Multivariate adaptive regression splines (“Earth”)
Numerical factors

Intercept -3.026
MAX(50-Age,0 0.017,
MAX(Age-50,0 0.000

AD claim frequency

212325272931333537394143454749515355575961636567697173757779818385

Age
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Multivariate adaptive regression splines (“Earth”)
Numerical factors
Intercept -3.143
MAX(65-Age,0) [ 0.013
MAX(Age-65,0) 0.011
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Multivariate adaptive regression splines (“Earth”)
Interactions

AD claim frequency

212325272931333537394143454749515355575961636567697173757779818385

intercept -3.143]
MAX(65-Age.0) | 0.013
MAX(Age-65,0) | _0.011]

Age
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Multivariate adaptive regression splines (“Earth”)
Interactions
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Multivariate adaptive regression splines (“Earth”)

Interactions

-3.131

0.011

MAX(Age-65,0) 0.011]
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Multivariate adaptive regression splines (“Earth”)

Advantages Disadvantages
= Minimum manual setup required = Model will contain discontinuities around knot points
= Fastruntime = Hand-crafting likely to improve results

= Highly interpretable results
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3/19/2018

How might “Earth” be applied?

= Historically pricing models have been fit by coverage and/or peril — are these still
the most suitable splits?

= When should models be split‘combined? (e.g., homeowners and landlords policies
or fire and lightning perils)

= How many models should we build and what should they predict?
= Increasing use of machine learning to answer these structural/strategic questions

©2018 Wills Towers Watson. Allrights reservec. Propritary and Confidential. - For Wills Towers Watson and Wils Towers Watson cent use only. WillisTowers Walson BI'I'lll 125

Case study - model hierarchy

... (etc)

High premium
model o o (et

Low premium

>

Older driver new
vehicle
model

model

One overall

model or
(eg GLM)

Older driver old
vehicle
model

Older driver
model

7

Younger driver
model S

T (etc)
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Case study - model hierarchy
Automated evaluation of model structures

Split Points to Consider
Age >=40

<
= \khicle age Age 40
= Premiumsize
= Payment method

085
I

Test Factors used for Evaluation

075

= Source
= \kehicle owned months
= Youngestadditional driverage

= Days from cover start E
= \khicle kept overnight 8
= Classofuse 0 ! 2 3 4

= Claims free years
= \bluntary deductible

Rating area 8

2]
Cor:0.86 1
ol T T T T T
Number of 2
drivers 4
Cor:-0.45 3 4
T Y T T
0 1 2 3
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Analytical
time and Interpretation
effort
. Table
Execution speed .
p Implementation
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Some machine learning methods

Classifications

Ensembles Trees
K-nearest q Neural
Neighbors ElaSIEE Networks

Principal
K-Means
r Components
Clustering Analysis

Regression
Trees

Naive Bayes

Gradient

Boosting
Machines

Random
Forests

Support Vector Ridge
Machines Regression

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson céent use only. WillisTowersWalson Ll'I'lil 129
Neural
Networks
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Start with a simple GLM...

® Log link function, g

= Age (piecewise-linear variates)

® F (indicator of Gender = Female)
= Age x Gender interaction

9wy = Bo +Buifi(Age)+Bafz(Age) +Bsf3 (F) + Bufa(Age, F)

0.56
n.es
0.54

ER)
0.6z
.0

é
SRR EL B F LRSS BEFELE AL D
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We can represent GLMs as a network...

1 Age F Input layer

g

By + s (age) | bt (age) sy () + ol (age Y [(Hiaden layer |
o= @8)

WillisTowers Walson Lil*I'lidl 132
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3/19/2018

We can represent GLMs as a network...

1 Age F Input layer

1 |[awge) |[ n@ge)| [ 5@ | [atage.F] [THidden layer |
ﬁO ﬁ1 ﬁz ﬁz ﬂ4
a= o 08)
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We can represent GLMs as a network...

1 Age F Input layer

1 fiAge) || f2(Age)| | f(F) | |fa(Age, F) | Hidden layer I

Hidden layer represents our manually Activation function breaks linearity:

engineered features: ReLU(x) = max(x, 0)

] fo =1 (*Rectified Linear Unit)

* fi=max(65—Age,0) Universal approximation theorem:

" f, =max(Age — 65,0) We can approximate (almost*) any

. - function arbitrarily well with a single
fs=F hidden layer

" f, = max(Age — 65 —100(1 - F),0) (*continuous, on compactsubsets)

General form:
" f;=ReLU(w;o+ w;;Age + w;,F)

willistowerswatson.com WillisTowers Walson Lil'I'lil 134
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We can represent GLMs as a network...

1 Age F Input layer

1 |[awge) |[ n@ge)| [ 5@ | [atage.F] [THidden layer |
ﬁO ﬁ1 ﬁz ﬁz ﬂ4
a= o 08)

willistowerswatson.com
©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wills Towers Watson clent use only

WillisTowers Walson Lil*I'lil 135

Generalizing to neural networks

1 Xy X, Input layer (LO): x;

WeightSZ Wij

|1| Al A || £ ||fe||Hiddenlayer (L1): £ = hy ()

IOutput layer (L2): u = h, (Z;B;f;) |

willistowerswatson.com
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Generalizing to neural networks

Model structure decisions

X2

f3

fa

Input features
Number of hidden layers
Size of each hidden layer
Activation functions
= Typically specified by layer
® ReLU is most commonly used
Connectivity of layers and weight sharing
= Typically fully connected with unique
weights
" Many variants exist, eg: Convolutional
Neural Networks for image classification
connect nearby blocks of pixels and apply
the same shared weights across each
block

willistowerswatson.com
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Generalizing to neural networks
Key model fitting decisions

X2

I

f;

fa

Optimization algorithm
= Typically variants of Back-Propagation
Loss function — to be minimized

Batch size — number of rows to consider in
each iteration

Epochs — number of passes through full data
Initial weights
Regularization parameters, eg:

" L1/L2 penalties

" Learning rate and decay

= Dropout

willistowerswatson.co
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Generalizing to neural networks

1 X1 X, Input layer (LO): x; “Deep learning”
refers to multiple

hidden layers
1 _fl_ |~f2J I_]%J |_f4J Hidden layer (L1): f; = hy (Z;w;;x;)

Weights: v,

1 g1 92| 93 || 9a Hidden layer (L2): g, = h, (Zjvjkfj)

Weights:

|Output layer (L3): u = h3 (. BrIx) |

willistowerswatson.com WillisTowers Walson Lil*I'lal 139
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Where is the value?

Which policyholderis more
likely to make a claim?

E

ST P S e L B B TR VAT PR S
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Where is the value?

Which picture is more likely
to be of a cat?

WillisTowers Walson Lil*I'lidl 141
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Where is the value?

Which picture is more likely
to be of a cat?
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Neural networks
Evolution or revolution?

WIS

KEEP
CALM

AND

START
A REVOLUTION
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Neural networks
Case study — market models

Context
= UK aggregator sites provide some historic quote data

= We wanted a model of “Average top 5 premium” for auto quotes to understand the
market’s pricing structure

® One month of data (~1m quotes)
" Limited subset of factors (no data enrichment beyond simple rating area & vehicle group)

Approach
= 60/40 split for training and holdout data

= Modelled as Log-Normal (ie In(Premium) ~N (i, 0?)) as Normal distributions well
supported across packages

= Compare Neural Network performance to GLM (using existing model parameterizations)
and GBM with RMSE of log-Premium on holdout data

willistowerswatson.com
©2018 Wills Towers Watson. All ights reserved. Proprietary and Confidential. For Wills Towers Watson and Wills Towers Watson chent use only.

WillisTowers Walson Lil'I'lil 144

3/19/2018

72



Neural networks
Require some work!

Dropouyt
\nput \ayer
Output layer
Epochs
Batch sjzg
Regu\‘a\"lzaﬁon

Initial weights

Optimization algorithm
Hidden, layers

Learning rate

Activation functions

willistowerswatson.com
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Neural networks

willistowerswatson.com
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Analytical
time and Interpretation
effort

Neural

network

Execution speed
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Some machine learning methods
R ; Gradient
Classifications " N Regression :
Ensembles Trees Earth Trees Boos_ll ng
Machines
K-nearest . Neural A. Random
Neighbors FESIINEE Networks NS (FE3ES Forests
Principal .
Clustening Components Lasso Hecnines [
Analysis
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Focus on Penalized Regression

Elastic Net
Ridge
Lasso .
Regression
©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wills Towers Watson clent use only. WillisTowersWalson Lil'I'lil 149

Penalized Regression
Overview

GLMs
= Predictions are given by f(X) = g"1(X.8)
= [ is estimated by minimizing a loss function L(B|X,y) (X is data & model, y the response)

Penalized regression
= The same, except the objective function becomes L(B|X,y) + L. “Penalty on 3"

Elastic Net

Minimize: L(B|X,y) +{A, XI5

+

A, X B

Lasso - just the blue part
= Penalty reduces insignificant parameter values to zero — useful for variable selection

Ridge - just the purple part regression models
= Penalty heavily penalize extreme parameters, but do not reduce parameters to zero

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential For Wills Towers Watson and Wills Towers Watson clent use only WillisToweys Walson Ll'I'lal 150
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Penalized Regression

GLM

f(x) = g’l(X.8) where B estimated by minimizing  L(BIX,¥)

Parameter 2

010 0,085 0.00 005
Parameter 1

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wi Towers Watson clert use only.
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Penalized Regression

GLM

f(xX) = g"X(X.p) where B estimated by minimizing  L(8X,¥)|+ 11Z,|ﬁi| + Azz_ﬁf
L 15

Ridge X; 57

Lasso Ridge

Lasso ;18|

Parameter 2
Parameter 2

Parameter 2

loss
2

20.10 005 0.00 0.05 0.10 0.10

008 0.00 008
Parameter 1

Parameter 1

Heavily penalize large parameters,
butdoes notreduceparametersto zero

0.10 005 0.00 0.05 0.10

Parameter 1

Penalty reducesinsignificant parameter
values to zero - useful for variable selection

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential For Wills Towers Watson and Wills Towers Watson clent use only
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Parameter 2

Penalized Regression
GL

f(x) = g’}(X.p) where p estimated by minimizing  L(81X,) + 11Z,|ﬂi| +
L

Ridge X; 57

M Lasso

Ridge

N

Lasso X;18;|

0.05-

P
2

0.00

loss

Parameter 2

005 .05

Parameter 2

0.10 205 0.05 0.10 210 005 0.05

000 0.00
Parameter 1 Parameter 1

Heavily penalize large parameters,
butdoes notreduceparameters to zero

040 010 .05

0.00
Parameter 1

005

Penalty reducesinsignificant parameter
values to zero -useful for variable selection

WillisTowers Walson Lil*I'lil 153

Penalized Regression
Parameter selection

* Minimize: L(BIX, ) + 44 ZilBi| + 2, X B
= Penalty parameters can be re-written: A, =a, 41,

-1(5)

= ¢ controls the mixture between Lasso (¢ = 1) and Ridge (@ = 0)

= 1 controls the overall size of the penalty
= 1, a selected using cross-validation

= Factors automatically
selected from initial set!

Cross-validation error

-5.263
-5.526
-5.789

-6.053
-6.316
-6.579
-6.842
-7.105
7.368
-7.632

log(l

Optimal (a, 1)
co

mbination

w0
28
® G

8.421
-8.684
-8.947
-9.211
-9.474
-9.737

@
ambda)
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Penalized Regression
Parameter selection - example

Mean model

The a /% combination
minimizing the cross
validation error is:
a=06,1=e""

Simple factor
GLM

Cross validation error

-2 -2.5 -3 -3.5 -4 -4.5 -5 -5.5 -6 -6.5 -7 -7.5 -8 -8.5
log(Lambda)

Alpha=1 ———Alpha=0.8 ==—Alpha=0.6 ==—Alpha=0.4 ==—=Alpha=0.2 ===Alpha=0

Models range from Lasso (a. =1) to Ridge (a. =0)

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wi Towers Watson clert use only.
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Penalized Regression
Parameter selection - example

= The fitting process can be investigated to help with feature selection

= Alpha = 0.6

Cross
validation error

2 25 -3 35 -4 -45 5 55 75 -8 -85 -9

As size of penalty o 65 -
decreases, log(Lambda)
parameters begin

emerge as non-zero | ;o

-

Parametervalue

Boap m e »

0.2
Log(lambda;

-9.5 -10 -10.5-11 -Inf

Parameters that are
still zero at the

! optimal lambda
0 could be discarded
0.4
0.2 //_

0

K <>M4_zwﬁ_:_ﬁ_,_@___¥

; Q5 O «= N
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Penalized Regression
Parameter selection

There are costs to allowing too many factors in our models

Computational cost of processing more data / fitting more parameters

Time cost of analysts needing to consider more potential effects

Reduced comprehensibility of interplay of many different correlated effects in our models
Financial cost of licensing and maintaining many different data sources, and
hosting/updating tables to use them in rating

Performance cost as increased number of tests makes it more likely that we will find
false-positives and overfit to noise in our data

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson céent use only. WillisTowersWalson Lil'I'lil 157
Penalized Regression
Case study — vehicle classification

Physical facticity Mechanical nature

E.g., height, length, weight E.g., engine size, fuel type

Qualitative descriptors Performance
E.g., body type, model range E.g., maximum speed, torque, BHP

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential For Wills Towers Watson and Wills Towers Watson clent use only
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Penalized Regression
Vehicle classification — categorical factors

Exposurel# Claims|Policy Factors ExlCodeIVehicle Makel ...|Engine Size
1 0 0000001 Ford 1400 1 0 0
1 1 0000002 Porsche 3000 0 0 1
0.5 0 0000001 Ford 1400 1 0 0
1 0 0000001 Ford 1400 1 0 0
0.5 1 0000003 Honda 1300 0 1 0
1 0 0000002 ] _Porsche |t 0 0 1
1 0 0000001 Ford 1400 1 0 0
0.5 0 0000003 Honda 1300 0 1 0
0.3 0 0000003 Honda 1300 0 1 0
1 1 0000002 Porsche 3000 0 0 1
1 0 0000001 Ford 1400 1 0 0
= One 0-1 column per level (excluding base) B g p(base) B B
-—> 4-> 4-> 1—> - > > > <-> >
= Equivalent to adding a “simple factor” to a
GLM
/M —
1 2 5 9
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Penalized Regression
Vehicle classification — numerical factors
Exposurel# Claims|Policy Factors | Ext Code | Vehicle Make | .. |Engine Size Engine Size =1300 |...|Engine Size =3000
1 0 0000001 Ford .. 1400 0 0
1 1 0000002 Porsche .. 3000 0 1
0.5 0 0000001 Ford . 1400 0 0
1 0 0000001 Ford N 1400 0 0
0.5 1 0000003 Honda .. 1300 1 0
1 0 0000002 Porsche .. 3000 0 1
1 0 0000001 Ford . 1400 0 0
0.5 (] 0000003 Honda . 1300 1 0
0.3 0 0000003 Honda .. 1300 1 0
1 1 0000002 Porsche . 3000 0 1
1 0 0000001 Ford . 1400 0 0
= Adding one 0-1 column per value/band allows full
flexibility, but loses knowledge of ordering
B B P(base) B B
> <-> 1—> 4—> > > - > <-> >
i
1 2 5 8
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Penalized Regression
Vehicle classification — numerical factors

= Adding variates retains ordering, but limits flexibility
= Model fit alsoimpacted byscale of x-values as
parameters are scaled, affecting the penalty size
= Orthogonal variates/splines can help with scaling and
convergence

I8

Brx + Byx? -+ fx®

Exposurel# Claims|Policy Factors | Ext Code | Vehicle Make | .. |Engine Size Engine Size |(Engine Size)"2 Engine Size)"5
1 0 0000001 Ford .. 1400 1400 1960000 5.38E+15
1 1 0000002 Porsche .. 3000 3000 9000000 2.43E+17

0.5 0 0000001 Ford - 1400 1400 1960000 5.38E+15
1 0 0000001 Ford . 1400 1400 1960000 5.38E+15
0.5 1 0000003 Honda . 1300 1300 1690000 3.71E+15
1 0 0000002 Porsche . 3000 3000 9000000 2.43E+17
1 0 0000001 Ford . 1400 1400 1960000 5.38E+15
0.5 0 0000003 Honda |.. 1300 1300 1690000 3.71E+15
0.3 0 0000003 Honda .. 1300 1300 1690000 3.71E+15
1 1 0000002 Porsche . 3000 3000 9000000 2.43E+17
1 0 0000001 Ford . 1400 1400 1960000 5.38E+15

11—
1 2 3 4

5

6

L
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Penalized Regression
Vehicle classification

Exposure|# Claims|Policy Factors | Ext Code | Vehicle Make | .. | Engine Size Engine Size <= 1300]... [Engine Size <= 3000
1 0 0000001 Ford - 1400 0 1
1 1 0000002 | Porsche _ |.. | 3000 0 1
0.5 0 0000001 Ford - 1400 0 1
1 0 0000001 Ford N 1400 0 1
0.5 1 0000003 Honda .. 1300 1 1
1 0 0000002 | Porsche |.. | 3000 0 1
1 0 0000001 Ford B 1400 0 1
0.5 0 0000003| Honda _|.. 1300 1 1
0.3 0 0000003| Honda _|.. 1300 1 1
1 1 0000002 | Porsche |.. | 3000 0 1
1 0 0000001 Ford - 1400 0 1
.
. B
«—
— B
. —
ﬁ R
= Adding a series of “less than or equal” indicators
retains as much flexibility as a column per band, and H
also retains knowledge of ordering —/ — —
1 2 3 4 5 6 7 8 9 10
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Deploying Penalized Regression

Same as GLMs!

=
1 <=20 1,720 179 1 1-10 164,107 77
2 21-30 34,893 122 2 11-14 84,859 101
3 31-50 118182 102 3 15-18 28,952 116
4 51+ 127,054 70 4 19-20 3931 272
5 Age Total 281,849 91 5 VG Total 281,849 91

Exposure
1 Male 197,339 92
2 Female 84,510 87
Gender
3
Total 281,849 91

© 2018 Willis Towers Watson. Al rights reserved. Proprietary and Confidential. For Willis Towers Watson and Wilis Towers Watson chent use only. WillisTowexrs Walson Li'I'Lil 163
Penalized
Regression
. able
Execution speed :
p Implementation
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A fuller summary...

am H

°®
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. Lo ® So
Machine learning in pricing o®e ®2® o%0 ®5©
, = L=t~
Conclusions (Part 2) ®e® o0
% © = 3
©g® e e

= Machine learning brings a proliferation of new methods

= Improving models is more than just finding the best method. Consider:
= What data are available and how can data be transformed to give insight
= What is the optimal model structure and target variable?
= How can information be transferred between models?

= Earth is a fast, interpretable method that can improve overall lift by informing
when/where to segment models

= Neural networks are complex and require numerous input decisions; analyzing
unstructured data (e.g., imagery) is an intuitive application for this method ... but where
else may it be helpful?

= Penalized regression can aid in factor selection decisions and may in fact be a good
method in its own right — particularly when the modeler has less of a “feel” for the data

= Machine learning in pricing is not all about improving predictive power. Consider:
= Fastinvestigation of new data

= Quick assessment and response of
emerging experience
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So what? How is the US market doing with machine learning
Some critical success factors

Data availability Static

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wi Towers Watson clert use only. Willis Toweys Walson Lil*1*1:l
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What are the three biggest challenges preventing your company from
becoming more data driven? (Q.21)

Data warehouse
Data accessibility/not easily integrated

IT/Information services bottlenecks/Lack of coordination

Conflicting priorities/Executive buy-in _ 31%

Data volume/quality/reliability _ 31%

Data capture/availability - [ R 2
Lack of expertise to analyze data _ 24%
Lack of sufficient staff to analyze data _ 26%
Lack of clarity on strategy _ 12%
Lack of tools to analyze data - 6%
Regulatory concerns [l 4%
Privacy concerns . 2%

Technology concerns (e.g., cyber risk, systems failure) - 2%

other [l 2%

None of these — being data driven is not importanttous 0%

Base: U.S. respondents(n=51)

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential For Wills Towers Watson and Wills Towers Watson clent use only Willis Towexs Walson KiI*Ilil

168

3/19/2018

84



Top-growing new data sources for insurers

Personal lines Now Two years
Smart home/smart building data 0% 52%
Usage-based insurance/telematics
Social media
Unstructured internal claim information
Unstructured internal underwriting information
Images

Commercial lines Now Two years
Unstructured internal claim information 46% 92%
Other unstructured customer information 11% 54%
Unstructured internal underwriting information 25% 39%
Usage-based insurance/telematics 11% 47%

Web/clickstream/phone/email customer interactions  [MEEZ) 36%

Images 3% 39%

©2018 Wills Towers Watson. Allrights reservec. Propritary and Confidential. - For Wills Towers Watson and Wils Towers Watson cent use only. WillisTowers Walson BI'I'l.l 169

Approximately what percentage of the external data that you
collect is proprietary as opposed to open source? (Q.24)

Don't know/Prefer not to

say Less than 26% proprietary

26% to 50% proprietary

More than 75% proprietary 51% to 75% proprietary

Base: U.S. respondents(n=51)
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So what? How is the US market doing with machine learning
Some critical success factors

Appetite to try new methods

Slowly upward

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wi Towers Watson clert use only.
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So what? How is the US market doing with machine learning
Methods used
Underwriting/Pricing Claims Marketing
Generalized linear (n(w;uLdGISs) _ 94% _ 78% _ 61%
One-way analyses | RN s+~ 54% 58%
Decision trees 55% 54% | E
M delconbinng petiods - B
Gradient boosting m(aégl;esi - 37% - 3006 - 24%
Random forest (RF) 1% I 5% I 6%
memoss ?:'gefééi%'eﬁfg"e" 1% B z0% B o7
elastic net)
Neural networks - 37% 41% B 24%
Ge”ii'g;g?gmg | B B % B 2%
Support vector machines - 20% - 19% - 12%
Base: U.S. respondentsusing advanced analyticsfor underwriting/pricing (n = 49), claims(n = 37) and/or marketing (n = 33)
WillisTowers Walson Ll'I'lil 172
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So what? How is the US market doing with machine learning

Some critical success factors

Modeling tools and platforms

Price assessment— scenariotesting

Slowly upward

©2018 Wills Towers Watson. Al rights reserved. Proprietary and Confidential. For Wills Towers Watson and Wi Towers Watson clert use only.
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Cloud-based environments and Hadoop

Regardless of size, insurers are actively exploring technology to manage big data

Large Medium
Now | Exploring | Now

Cloud-based (Amazon Web
Senices, Azure)

19% 48% 7%

Hadoop 37% 7%

Small

Exploring | Now | Exploring
50% 0% 40%

14% 0% 20%
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So what? How is the US market doing with machine learning
Some critical success factors

Internal skill sets M Slowly upward

“We're also seeing an influx of quantitative talent to the insurance industry. In
addition to actuaries, insurers are hiring statisticians, data scientists, marketing
scientists and behavioral scientists. The industry is challenging these professionals
to solve a wider range of problems across the customer value chain”

- Recent article by Claudine Modlin and Graham Wright
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What are the three biggest challenges preventing your company from
becoming more data driven? (Q.21)

i Data warehouse "
Data accessibility/not easily integrated _ 41%
IT/Information services bottlenecks/Lack of coordination _ 33%
Conflicting priorities/Executive buy-in _ 31%
Data volume/quality/reliability _ 31%

Data capture/availability 28%

Lack of sufficient staff to analyze data _ 26%

Lack of clarity on strategy
Lack of tools to analyze data - 6%

Regulatory concerns [l 4%

Privacy concerns . 2%

Technology concerns (e.g., cyber risk, systems failure) - 2%

other [l 2%

None of these — being data driven is not importanttous 0%

Base: U.S. respondents(n=51)
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So what? How is the US market doing with machine learning
Some critical success factors

Measuring value Static
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How do you determine the value of your advanced analytic models? (Q.11)
How well understood are your advanced analytic models by those who need
to use them, outside of the modeling team? (Q.12)

Measures used to determine value of Level of understanding of advanced analytics
advanced analytics models models outside of the modeling team

Points saved on loss ratios _ 81% Very strong/Extensive 0%
More efficient use of resources _ 49%
Stronger control over portfolio _ 44%
Able to cut claim costs - 32%
Faster processing time - 27% Not at allVery limited - 22%

Other I 5% = Early identification of large claims
= Improved response rate

Strong - 17%

None of these —we haven't
identified measures of value for our . 12%
adv anced analy tical models

Base: U.S. respondentsusing advanced analyticsto evaluate fraud potential (n = 41)
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So what? How is the US market doing with machine learning
Some critical success factors

Application Ki Slowly upward
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For which aspects of underwriting/pricing does your company
group currently use or plan to use advanced analytics? (Q.2)

Rating/Pricing 72% 22% 6%

Underwriting/Risk selection 53% 37% 10%

37% 33%

Automation (e.g., straight-through processing)

Report ordering (e.g., MVR, CLUE) 26% 37% 37%

Loss control 10% 45% 45%

w
S

Cession to residual market or facultative reinsurance Pl 4 94%

= Currently use Plan to use within two years = Do not use and no plans to use

Base: U.S. respondentsusing or planning to use advanced analyticsfor undenwriting/pricing (n =51)
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For which aspects of claims does your company group currently
use or plan to use advanced analytics? (Q.4)

Evaluation of claims for fraud potential 56% 18%

Evaluation of claims for litigation potential 59% 26%

Evaluation of claims for subrogation potential 49% 38%

Claim triage (identification of complex claims to triage claim workflow) 54% 20%

u Currently use Plan to use within two years = Do not use and no plans to use

Base: U.S. respondentsusing or planning to use advanced analyticsfor claims(n = 39)
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Beyond underwriting/pricing and claims, in which other areas
does your company group currently use, or plan to use, advanced
analytics? (Q.9)

Reserving
Aggregate reserving 20% 74%

Case reserving 25% 71%

Expense management
Underwriting expense efficiency 20% 60%
Premium audit 23% 63%

Marketing

Customer profiling/segmenting 37% 39%
Acquisition strategy/Target marketing 29% 49%

Product design/tailoring 25% 69%

Agency/Broker management

Agency/Broker management 14% 74%

= Currently use Plan to use within two years = Do not use and no plans to use

Base: Total U.S. respondents(n =51)
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How Al and machine learning will streamline processes

Top applications insurers plan to use two years from now for
artificial intelligence (Al) and machine learning

Now Two years

Reduce time spent by humans 8% 49%

Identify high-risk cases
Build risk models for better decision making
Help humans identify appropriate risk attributes
Better understand risk drivers
Identify patterns of fraudulent claims
Augment human-performed underwriting
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So what? How is the US market doing with machine learning
Some critical success factors

Data availability Static
Appetite to try new approaches Slowly upward
Modeling tools Slowly upward
Internal skills sets ? Slowly upward
Measuring value Static
Application ? Slowly upward
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The data and analytics “iceberg”
Evolution or cyclicality? Innovation and standardization in the analytical approach

Early GLM Mature GLM Early ML/Current ~ Mature ML/Next
= Early 2000s = 2010to 2015 = 2015 to 20172 = 2017 onwards?

Analytics Analytics

Data
SRS S—
= Data not organized for= Data organized = Datanotyetorganized® Data organized for ML
analytics « Speed of thought for ML = Integrated tools with
= Statistical / coding analytics = “Coding” type skills slick interface
skills = Business & regulators = Numerous tools = Speed of thought
= Business leaders experienced = Business leaders analytics
inexperienced = Workflow, governance, interested, concemed * Business comfortable
= Regulatorsunfamiliar  deployment = Regulators- ? = Regulators-?
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Machine learning beyond pricing Sl
- -
- -
R £

= Carriers are experimenting with ML, it is becoming established within insurance
analytics

= [t opens up a broader set of problems to analytics, and offers a broader tool set
for familiar problems

= New (wider) data beats new methods — think UBI!

= Factor definition, problem specification and method selection are critical for
success

= There’s opportunity to reveal actionable, first-order insights in applications to
which analytics have not been deployed previously

= With this broad new opportunity, spotting strong initial use cases is important
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Questions
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