Demystifying Casualty and Cyber Risk Modeling

Scott Stransky
James Kaufmann

Cyber Catastrophe Modeling

Rethinking Coverage of Large Loss Events

Missed Opportunities

76% of existing insureds seek higher coverage and limits

Source: Partner Re & Advisen

Hindered Innovation

47% of insurers say recent events had no impact on their underwriting

Source: Partner Re & Advisen

Omitted threats

Insurers believe silent cyber can increase combined ratios by 7%

Source: Willis Re

Sources of Systemic Cyber Risk

Software Vulnerabilities

Internet Infrastructure

Cloud Computing Trends by the Numbers

Increase of laaS as the primary work environment

Source: McKinsey & Company

Source: AIR

Historical Cloud Downtime Events

Microsoft Azure "Leap Year Bug"

Amazon Web Services US-East-1 Outage Microsoft Azure Global Outage (SSL Certificate Expiration)

Google Outage by Lightning Strike

• February 2012

• June 2012

• February 2013

• August 2015

Verizon Communications Inc Outage

• January 2016

Microsoft Office 365 Email Outage

January 2016

Salesforce Circuit Fault to NA14

May 2016

Amazon Web Services \$3 Outage

• February 2017

Implications for (Re)insurance Industry

- (Contingent) business interruption coverage
- Third party liability coverage
- Development of reinsurance markets
- Non-affirmative (silent) coverage

Robust Risk Management Includes Several Approaches

Market Share Approach

Detailed Accumulation Approach

Cloud Service Provider Recovery

Percent of Companies with Service Recovered for 3-6 day scenario

Modeled Losses Driven by E-business Factors

B2B and B2C

Losses Change Throughout Downtime Event

Industry Exposures Determine Event Footprint

12.4 million businesses

Cyber supply chain

Insurance terms

Cyber Insurance Take-up Rates Vary Widely

Cyber insurance take-up rates by industry and turnover

■0%-10% **■**10%-20% **■**20%-30% **■**30%-40% **■**40%-50% **■**50%-60%

Total Industry Losses by Downtime Duration

Industry Losses for Extreme Event (3-6 Day Downtime)

©2018 AIR Worldwide

Gross Insured Losses by Waiting Period Length

Approach Differences Reveal Insights

The Challenge of Assigning Probabilities to Scenarios

How Can the Cloud Go Down?

Environmental

Accidental

Adversarial

©2018 AIR Worldwide

Structural

What is Likelihood of Cloud Downtime Event?

Distribution of Historical Events

©2018 AIR Worldwide

Cyber Data Improves Understanding of Risk

Outside-in

Incident

Inside-out

Process & Policy

Cloud Hosting

Endpoint

Threat Intelligence

22

Building a Probabilistic Cyber Model for "One-Off" Breaches

Annual probability of breach

Given a breach, probability of X records stolen

Cost of breach, given Y records stolen

Machine Learning Provides Insights on Frequency

Rating Variables Refine View of Risk

Antivirus Effectiveness

File Sharing

Intrusion Detection

Firewall Health

Patching Cadence

Security Ratings

Records Lost Drives Financial Losses

Source: Edwards, Benjamin, Steven Hofmeyr, and Stephanie Forrest. "Hype and heavy tails: A closer look at data breaches." WEIS, 2015.

Cost of Breach

Source: Jacobs, Jay. Analyzing Ponemon cost of data breach. Dec. 2014

Silent Cyber Threat Looms Throughout

Model Many Cyber Scenarios Today

ARC (Analytics of Risk from Cyber) Released in 2017

Exposure Management

Data Augmentation

Risk Modeling

Modeling Supports Cyber Insurance Industry Growth

Understand Risk

Optimize Coverage

Identify Opportunities

Overview

- Examples of casualty catastrophes
- Casualty CAT modelling use cases
- Scenario-based modelling approach
- Challenges with quantification
- Future research

Casualty Catastrophe Examples

Casualty Cat Events Come in Two Main Types

Classic Clash Events

- Event occurring at a single point in time
- Examples: infrastructure e.g., MGM Grand shooting, Deepwater Horizon, Grenfell Towers

Other Systemic Events

- Event arising from a single trigger such as a product or business practice but not occurring at a single point in time
- Examples: product-based e.g., opioids, Madoff, LIBOR, silicone breast implants, Chinese dry wall, asbestos or practice-based e.g., sport related concussions, Enron

Majority of Historic Events Are Classic Clash Events

Type of Event	Total Number of Events	% of Cases	Sum of Losses	Avg. Losses per Event	Average Accident Period
Classic clash	14,118	88%	\$970 B	\$69 M	One day
Other systemic	1,865	12%	\$1735 B	\$930 M	4.6 years (stdev = 11.5 yrs)

Classic Clash Example: MGM Grand Shooting

2nd October 2017

Systemic Event Example: Sports Concussions

	NFL	College	Schools
# of players	~2,000	73,660	1,080,693
# of institutions	32	633	14,047

- NFL and colleges concentrated in fewer institutions
- Each high school (and medics serving those schools or physicians examining children) may be sued particularly as diagnosis is difficult and high visibility / emotional impact which may increase insured loss

http://www.ncaa.org/about/resources/research/football

Casualty CAT Modelling Use Cases

Use Cases

Portfolio Management

- Exposure aggregation monitoring and management
 - Performed across casualty lines of business
 - Industry, not geographic, aggregation
 - Includes identification of under-exposed pockets as potential growth opportunities
- Estimate the impact of various changes to underwriting guidelines or any strategic initiatives under consideration

Reinsurance buying and pricing

- Marginal impact pricing
 - Side-by-side comparison of the distribution of loss results with and without a particular treaty on the books
 - Incorporate cost of additional capital as input into pricing
 - Could also apply to large accounts at primary insurers
- Develop an understanding of how different reinsurance structures/attachment points would react to various future scenarios

Capital Adequacy and Allocation

- Stress testing: Consideration of large casualty event impacts on capital adequacy
- Capital allocation may be influenced by which lines of business are more often impacted by extreme events

Scenario-based modelling approach

Framework: Supply chain

- Provides proximity and framework for casualty events
- Enables modeling of accumulations across insured portfolios

Football Concussions-Portfolio Overlay

Loss Simulation

- Blue bars represent mean outcomes--conditional AAL
- Box plots also show the 25/50/75th percentiles with extreme outcomes noted by vertical bars on each end

Challenges With Quantification and Future Development Work

Some Quantification Hurdles

Non-repeating Events

Historical Data

The Human Element

Latency/long tail

- The specific companies or products at the center of a casualty event often do not survive the event
- Although they are non-repeating, past events may still teach us something about the future
- Due to the nonrepeating and infrequent nature of casualty events, historical data must be used carefully
- Proxy data may exist
- Expert input can be used as an alternative data source

- Changes in socioeconomic, environmental, health, and legal environments are difficult to model mathematically
- Expert opinion may be relied upon to estimate the impact of changes to these risk factors

- The latent nature of some casualty events increases uncertainty of estimation
- Example: asbestos loss allocation methods

Further Development Work-A Stochastic Approach

- **Goal:** to randomly generate any number of events, defined by stochastic parameters, while ensuring a representative variety of realistic potential events.
- This is possible using a combination of expert opinion and historical data to define categories of casualty events and how each category should be parameterized
- Will allow future events to be simulated and their impacts to a portfolio investigated

Example 1: Corporate Implosion Shape

Property	Description
Footprint Used	Enron
Shape	Corporate
Losses	Related to the number of causative parties, size of the business that implodes
Lines of Business	PL, D&O
Systemic	Mostly single, systemic within an industry
Probability	Stationary

Example 2: Product/Component Shape

Property	Description
Footprint Used	Carbon Nanotubes-Polymers
Shape	Product component/ingredient
Losses	Additive
Lines of Business	GL, WC, PL, Environmental
Systemic	Between and within industries
Probability	Non-stationary

For More Information

- Contact me!
 - James Kaufmann
 - AIR Worldwide—Casualty Analytics
 - **-** (617) 954-1847
 - <u>jkaufmann@air-worldwide.com</u>
- Check out the Lloyd's paper that goes into more detail on our stochastic modeling methodology: https://www.lloyds.com/news-and-risk-insight/risk-reports/library/understanding-risk/arium

