
Deep Neural Networks
Actuarial Applications for emerging AI
CAS RPM
Prashant De

Agenda
1) Neural Networks - Introduction
2) What does “Deep” mean in Neural Network terminology

a) Stochastic Gradient Descent
b) Backpropagation is the key
c) What drives the network growth

3) Architecture is everything: How Deep Learning architectures solve problems
a) Convolutional Neural Networks with Images + Demo
b) RNN/LSTM with Text + Demo
c) Autoencoders with unsupervised learning + Demo(if time)

4) Actuarial Applications
a) Applications for deep neural nets in insurance
b) Challenges and risks : Questions actuaries should ask during neural net discussions

1) Perceptrons the building blocks of neural nets

F(x)

Perceptron: basis
of a neural network

Inputs

Output

F(X) is a definable
function

Input Layer
Hidden Layer

Output Layerp1

p2

p3

p4

p5

p6

p8
p7

p9

p10

p11p13

p14

p16

c1

c2

c3

c4

c5

c6

c7

c8

c9
c10

c12

c11

p15

c13

Ai : Activation function at node i
pi : Previous layer(i) = A(pi)*WCi
ci : Current layer (i)
A(ci)*WCi

Nomenclature

Terminology before we dive in
● “Pre-processing”: Data transforms readying data for input to a neural net. Key

decisions include
● “Feed-Forward”: Neural Networks where signal from functions travel in direction

from input to output
● “Convolutional”: The merging of multiple, if not comprehensive, results from

functions estimating an objective function
● “Recurrent”: Networks where outputs are re-used as inputs at the next time step
● “Long Short Term Memory”: Commonly used in a recurrent network, a static layer

recording the previous output with functions to control input, memory and output
to the next step

● “Pooling”: TBD
● “Dropout”: A method to randomly drop connections to reduce over-fitting
● “Fully Connected”: All neurons receive an input signal and deliver an output

signal
● “Backpropagation”: Adjusting the network weights by first minimizing the loss

function and working back towards the input, adjusting connected weights at
each step

● “Stochastic Gradient Descent”: A step towards a smaller loss function using
partial derivatives

● “Hidden Layer”: Series of functions that process input signal and output to
another layer. Hidden since input and output layers are transparent

● “Epoch”: A single run through the neural network from input to output (iteration)

Sigmoid Function: (1)/(1+exp(-x))

Purpose: Similar to logistic, binomial classification

Tanh Function: TBD

Purpose: To transform a -ve 1 scale to +ve 1

ReLU function: ~ max(0 ,ln(1+exp(x))) x:[0:1]

Purpose: Activate as +ve multiplier at gradient 1 to outpuit

SoftMax Function: Prob (yi | input) = exp(xi*wi)/(Sum: exp(xi*wi: for 1
to D)

Purpose: Transform multinomial scalar outputs to posterior log normalized vector
squashed between 0 and 1.Multinomial.

2) The “Deep” in Deep Neural Nets
GoogleNet for Image Classification

https://www.cs.unc.edu/~wliu/papers/GoogL
eNet.pdf : Szegedy et al.

● 22 Layers deep
● Multiple entry points and merges
● Image classification focus
● Example of a feed-forward network

where the outputs are not re-used as
inputs

● Purpose is to classify images
● A tangential purpose is to support

internet memes (referenced in paper)

Notes to consider:
1. The layers of abstraction are akin to

“feature engineering”. By abstracting the
data into “hypotheses” to test that a human
might not arrive at to develop as a
hypothesis for the model

2. Works well for specific problems such as
images, and text in some cases where
there is complex data problem that needs a
general solution

3. This is important to Actuaries for three
specific reasons:

a. Abstraction layers are not easy to
explain, nor are results

b. Network architecture are important
but complex; mistakes can be
made

c. Overfitting is an issue(use
dropouts)

Recurrent Neural Networks for
Text Processing

Neural Net

Output i

Input i

Input i+1 =
f(output i)

NN

O

1

NN

O

2

NN

O

3

NN

O

4

The

Quick

Quick

Brown

Brown

Fox

Fox

Jumps

Inputs

Unpacking the network

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

2a) Stochastic Gradient Descent

Input Layer
Hidden Layer

Output Layerp1

p2

p3

p4

p5

p6

p8
p7

p9

p10

p11p13

p14

p16

c1

c2

c3

c4

c5

c6

c7

c8

c9
c10

c12

c11

p15

c13

Ai : Activation function at node i
pi : Previous layer(i) = A(pi)*WCi
ci : Current layer (i)
A(ci)*WCi

Nomenclature

E: MSE (Mean
Squared Error
example)

Stochastic Gradient Descent is a popular method to reduce the error
function and fit the model closer to the data

● Efficient because it assesses one connection at a time
(unlike batch gradient descent which tries the whole or a
large sample of the network)

● Series of partial derivatives. Let’s take one example:
○ Let’s assume an error function that measures the

deviance between observed(o) and expected(e)
○ Squared difference between o and e is loss function

L
○ Derivative with respect to single weight wi is L(wi)
○ A single step learning parameter lamda(lam) is

introduced
○ The weight is re-adjusted to wi=w0 - lam* L(wi)
○ Why negative gradient? We want to reduce the

error!
● This is done repetitively until a stopping criteria is reached
● Some issues

○ Saddle points explored in Bengio
○ Overfitting

2b) Backpropagation is key to fitting models

Input Layer
Hidden Layer

Output Layerp1

p2

p3

p4

p5

p6

p8
p7

p9

p10

p11p13

p14

p16

c1

c2

c3

c4

c5

c6

c7

c8

c9
c10

c12

c11

p15

c13

Backpropagation Steps:
1) Initialize the weights at each pi and ci
2) Calculate the Error Value
3) Take a random connection ci
4) Peturb the weight, ci*wi, value by a small amount

δ(ci)wi
5) Relate back to connected pi by derivative of

activation function (δpi = A’(pi) Z wij δcj)
6) Re-calculate the Error Value
7) Repeat until a stopping criteria is activated

Ai : Activation function at node i
pi : Previous layer(i) = A(pi)*WCi
ci : Current layer (i)
A(ci)*WCi

Nomenclature

E: MSE (Mean
Squared Error
example)

3a) Convolutional Neural Net with images in R

Demo on MNIST data

3b) RNN/LSTM with Text

Demo on Text and Context

4a) Deep Learning Actuarial Applications 1/2
Actuaries have been exploring neural networks for some time!

Some examples from Actuarial Lit or “Actuarial Neural Network” history:

Major changes in the industry since these papers
● Development of open source software to build neural

networks at scale
○ The Apache software foundation creating Spark,

Storm and Cassandra and Hadoop
○ Python and R emerging as open source

statistical and data munging programs with a
vibrant community of developers

○ Data Science Community open sourcing code:
TensorFlow from Google, Caffe, Keras, Torch,
Theano

● Hardware and specifically GPUs that support parallel
processing

● Web services such as Amazon AWS, Google, Microsoft
Azure and Rackspace offering managed services

● Data especially unstructured data such as text holding
value with an objective in mind

4a) Deep Learning Actuarial Applications 2/2

Submission

Pricing

Claims

Reserving

Fraud

Observed in Industry Value add with DL in value chain

Logistic models for underwriters for a
final (Yes/No) using thresholds

Finer tuned and multinomial models
detailing Yes/No/Potential to write with
change as an example of multiple
outcomes with actions attached

Frequency-Severity or Pure Premium
parametric or non-parametric (typically
shallow ML) on historical data

Finer tuned pricing - company owns
the architecture of the model

Shallow Machine Learning Triage models
using some n-gram text models to predict
Severity

Chain Ladder,BF and Cape Cod at the AY-Dev
period grain. Stochastic reserving using
parametric methods

Unsupervised clustering, network and graph
analyses and shallow ML where target data
available

Deep NN architecture development that can
combine text, sound, image and regular
structured data - with valuable additional
capabilities to absorb highly dimensional data

Claims grain with fine tuned cohort prediction
across time, including RNN architectures that
can estimate future states
Ability to combine
data types and
develop finely
tuned suspicion
models

1) You own
the model
architecture

2) Can use
increasingly
dimensional
and complex
data being
created

3) Finer
tuning of
model to
objective
(dangers of
overfitting)

4b) Challenges and risks: Questions to ask
● What is the objective of the model and how does this solve the business problem?
● What pre-processing steps have you taken?
● Is there a resource constraint? (In terms of people, systems and time)
● Why does the architecture actually work? Have you tested other architectures?
● Are you collecting human decision data? How are you adjusting for bias?
● Is the model overfitting? How have you controlled for this?
● Does the model need to be explainable to a business?
● How much upkeep is needed?
● Has ensembling with another model improved results?

