Vectors and Lists

Introducing vectors

In R, every variable is a vector. Think of a set of contiguous cells in a
spreadsheet.

set.seed(1234)
e <- rnorm(100)
X1 <- 1:10

Here, e is a vector with N values. X1 is the sequence of integers from |
through 10.

Vectors can grow and shrink automatically. No need to move cells around
on a sheet. No need to copy formulas or change named ranges.

Vector properties

m Every element in a vector must be the same type.
e R will change data types if they are not!

¢ Different types are possible by using a list or a data frame (later)

m Vectors have one dimension

e Higher dimensions are possible via matrices and arrays

m Possible to add metadata (like names) via attributes

Vector construction

Vectors are constructed in one of several ways:
m Return from a function or operation
e seq, rep, sample, rnorm, etc.
m Concatenation

m Growth by assignment

seq

seq is used often to generate a sequence of values. The colon operator :
is a shortcut for a sequence of integers.

pies seq(from = 0, by = pi, length.out = 5)
:5

2000:2004

i <-

In =

year

rep

The rep function will replicate its input

i = rep(pi, 100)
head (i)

[1] 3.141593 3.141593 3.141593 3.141593 3.141593 3.141593

Concatenation

The ¢ () function will concatenate values.

i <-c(l, 2, 3, 4, 5)
Jj <-c(6, 7, 8, 9, 10)
k <= c(i, 1)

I <- c(1:5, 6:10)

Growth by assignment

Assigning a value beyond a vectors limits will automatically grow the
vector. Interim values are assigned NA.

i <- 1:10
i[30] = pi
i

[1] 1.000000 2.000000 3.000000 4.000000 5.000000 6.000000 7.000000

[8] 8.000000 9.000000 10.000000 NA NA NA NA
[15] NA NA NA NA NA NA NA
[22] NA NA NA NA NA NA NA

[29] NA 3.141593

Vector access - by index

Vectors may be accessed by their numeric indices. Remember, .’ is
shorthand to generate a sequence.

set.seed(1234)

e <- rnorm(100)

e[1]

[1] -1.207066

e[1:4]

[1] -1.2070657 0.2774292 1.0844412 -2.3456977

efc(1,3)]

[1] -1.207066 1.084441

Vector access - logical access

Vectors may be accessed logically. This may be done by passing in a logical
vector, or a logical expression.

1 =5:9
i[c(TRUE, FALSE, FALSE, FALSE, TRUE)]

[11 5 9
ifi > 7]
[1] 8 9

b=1>7
b

[1] FALSE FALSE FALSE TRUE TRUE
i[b]

[1] 8 9

which

The which function returns indices that match a logical expression.

i <- 11-20
which(i > 12)

11 3 4 5 6 7 8 910
ifwhich(i > 12)]

[1] 13 14 15 16 17 18 19 20

sample

The sample function will generate a random sample. Great to use for
randomizing a vector.

months <- c("January', "February", "March", "April"
"May™, "June”, "July”, "August”
, '""September™, "October', "November', "December'™)

set.seed(1234)
mixedMonths <- sample(months)
head(mixedMonths)

[1] "February™ "July" "November™ "June"’ "October™ "May"

Get lots of months with the size parameter:

set.seed(1234)
lotsOfMonths <- sample(months, size = 100, replace = TRUE)
head(lotsOfMonths)

[1] "February'™ "August" "August"' "August'* "November"™ "August"

sample Il

Sample may also be used within the indexing of the vector itself:

set.seed(1234)
moreMonths <- months[sample(1:12, replace=TRUE, size=100)]
head(moreMonths)

[1] "February"™ "August" "August" "August" "November™ "August"
Cleaner with sample.int
set.seed(1234)

evenMoreMonths <- months[sample.int(length(months), size=100, replace=TRUE)]
head(evenMoreMonths)

[1] "February"™ "August" "August" "August" "November™ "August"

order

The function order will return the indices of the vector in order.

set.seed(1234)
X <- sample(1:10)
X

[11 2 6 5 8 9 4 1 7 10 3
order(x)

[11 7 110 6 3 2 8 4 5 9
x[order(x)]

[11 1 2 3 4 5 6 7 8 9 10

Vector arithmetic

Vectors may be used in arithmetic operations.

BO <- 5
Bl <- 1.5

set.seed(1234)

e <- rnorm(N, mean = 0, sd = 1)
X1 <- rep(seq(1,10),10)

Y <- BO + BL * X1 + e

Y is now a vector with length equal to the longest vector used in the
calculation.

Question: BO and BI are vectors of length |.
X1 and e are vectors of length 100.

How are they combined?

Recycling

R will “recycle” vectors until there are enough elements to perform an
operation. Everything gets as “long” as the longest vector in the
operation. For scalar operations on a vector this doesn’t involve any
drama. Try the following code:

vectorl = 1:10
vector2 = 1:5

scalar = 3

print(vectorl + scalar)

[11 4 5 6 7 8 9 10 11 12 13
print(vector2 + scalar)

[1] 4 56 7 8

print(vectorl + vector2)

[1]1 2 4 6 810 7 9 11 13 15

Set theory - Part |

The $in% operator will return a logical vector indicating whether or not
an element of the first set is contained in the second set.
X <- 1:10

y <- 5:15
X %in% y

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

Set theory - Part I

B union

m intersect
m setdiff

B setequal

B is.element
2union

X <- 1900:1910
y <- 1905:1915
intersect(x, y)

[1] 1905 1906 1907 1908 1909 1910
setdiff(x, y)

[1] 1900 1901 1902 1903 1904
setequal (x, y)

[1] FALSE

is.element(1941, y)

[1] FALSE

Summarization

Loads of functions take vector input and return scalar output. Translation
of a large sest of numbers into a few, informative values is one of the
cornerstones of statistics.

X = 1:50
sum(x)
mean(x)
max(x)
length(x)
var(x)

Vectors

Vectors are like atoms. If you understand vectors- how to create them,
how to manipulate them, how to access the elements, you’re well on your
way to grasping how to handle other objects in R.

Vectors may combine to form molecules, but fundamentally, everything in R
is a vector.

Exercise - Vectors

Create a vector of length |0, with years starting from 1980.

Create a vector with values from 1972 to 2012 in increments of four
(1972, 1976, 1980, etc.)

Construct the following vectors (feel free to use the
VectorQuestion.R script):

FirstName <- c("Richard™, "James', "Ronald", "Ronald"
, ""George', "William", "William", "George"
, '"'George'", "Barack', "Barack')

LastName <- c('Nixon"™, '"Carter', '"Reagan', ''‘Reagan”
, ""Bush', "Clinton', "Clinton", "Bush"

, ""Bush™, "Obama'™, '"Obama')
ElectionYear <- seq(1972, 2012, 4)

m List the last names in alphabetical order

m List the years in order by first name.

m Create a vector of years when someone named “George” was elected.
® How many Georges were elected before 1996?

m Generate a random sample of 100 presidents.

Answer

I LastName[order(LastName)]

[1] "Bush” "Bush™ "Bush™ "Carter™ "Clinton"™ "Clinton"™ "Nixon"
[8] "Obama™ ""Obama' ""Reagan™ "Reagan"

I ElectionYear[order(FirstName)]

I ## [1] 2008 2012 1988 2000 2004 1976 1972 1980 1984 1992 1996

I ElectionYear[FirstName == "George"]

I ## [1] 1988 2000 2004

myLogical <- (FirstName == "George") & (ElectionYear < 1996)
Iength(which(myLogical))

I ## 1] 1

I sum(myLogical)

I ## 1] 1

I sample(LastName, 100, replace = TRUE)

it [1] "'Bush™ "Clinton"™ "Reagan' "Obama" ""Reagan’ "‘Obama™ "Reagan"
it [8] ""Reagan'™ '"Reagan'™ ''Reagan'™ ''Reagan' ''Reagan' ‘''Carter' '"Nixon"
[15] ""Reagan'™ '"Bush "Clinton"™ "Obama" "Obama' "Nixon" "Clinton"
[22] "Reagan™ '"Reagan' "Clinton"™ "Carter™ '"Bush" ""Reagan' "'Reagan"
[29] "Obama™ "Bush™ "Clinton"™ "Bush" ""Reagan”™ "Clinton" "Reagan"
[36] "Clinton" "Bush" "Clinton"™ "Reagan"™ ''Bush" "Nixon" "Reagan"
[43] "Bush" "Clinton"™ "Carter™ "Clinton"™ "Clinton"™ "Bush" "Carter"
[50] ""Obama" ""Obama' "Nixon" "Reagan™ "Nixon" ""Reagan'" "'Bush"
[57] "Reagan™ "Clinton™ "Nixon" "Clinton"™ "Carter™ "Obama" "Nixon"
[64] 'Bush™ "Nixon" "Clinton"™ "Bush" "Nixon" ""Reagan’ "'Bush™
[71] 'Obama" "Clinton" "Carter™ "Clinton" "Reagan'™ '"Obama" "Bush"
[78] ""Reagan™ 'Carter'™ 'Obama" "Carter™ 'Obama" "Carter™ 'Carter”
[85] "Carter™ "Clinton"™ "Reagan™ "Nixon" ""Reagan”™ ""Bush" "Nixon"
[92] "Clinton" "Reagan'" 'Reagan' 'Carter' '"Reagan'" '"Carter'"™ '"Carter"

[99] ""Bush™ "Nixon"

Lists

Lists have data of arbitrary complexity. Any type, any length. Note the
new [[]] double bracket operator.

x <- listQ)
typeof(x)

[1] “list”

x[[1]]1 <- c('Hello™, "there™, "this", "is", "a", "list")
x[[21]1 <- c(pi, exp(1))

summary (x)

H#t Length Class Mode

[1,] 6 -none- character
[2,] 2 -none- numeric
str(x)

List of 2
$ - chr [1:6] "Hello™ "there™ "this" "is"
$ - num [1:2] 3.14 2.72

Lists

Vi—Vv2

[vs. [L

[is (almost always) used to set and return an element of the same type as
the containing object.

[[is used to set and return an element of the same type as the contained
object.

This is why we use [[to set an item in a list.

Don’t worry if this doesn’t make sense yet. It’s difficult for most R
programmers.

Recursive storage

Lists can contain other lists as elements.

y <= list(Q)
y[[11] <- "Lou Reed"™
yL[2]1] <- 45

x[[311 <-y

Vi-Vv2 V3

List metadata

Again, typically names. However, these become very important for lists.
Names are handled with the special $ operator. $ permits access to a
single element. (A single element of a list can be a vector!)

YL[11] <- c('Lou Reed", "Patti Smith™)
y[[2]1] <- c(45, 63)

names(y) <- c(“Artist”, "Age")

y$Artist

[1] "Lou Reed™ "Patti Smith"
y$Age

[1] 45 63

lapply

lapply is one of many functions which may be applied to lists. Can be

difficult at first, but very powerful. Applies the same function to each
element of a list.

myList <- list(firstVector = c(1:10)
, secondVector = c(89, 56, 84, 298, 56)
, thirdvector = ¢(7,3,5,6,2,4,2))
lapply(myList, mean)

$FirstVector

[1] 5.5

##

$secondVector
[1] 116.6

H#t

$thirdVector

[1] 4.142857

lapply(myList, median)

$FirstVector
[1] 5.5

#H#

$secondVector
[1] 84

#

$thirdVector
[1] 4

lapply(myList, sum)

$FirstVector

[1] 55

##

$secondVector
[1] 583

H#

$thirdVector

[1] 29

Why lapply?

Two reasons:

|. It’s expressive. A loop is a lot of code which does little to clarify
intent. 1apply indicates that we want to apply the same function
to each element of a list. Think of a formula that exists as a column
in a spreadsheet.

2. It’s easier to type at an interactive console. In its very early days, S
was fully interactive. Typing a for loop at the console is a tedius

and unnecessary task.

Summary functions

Because lists are arbitrary, we can’t expect functions like sum or mean to
work. Use 1apply to summarize particular list elements.

List Questions

m Create a list with two elements. Have the first element be a vector with
|00 numbers. Have the second element be a vector with 100 dates.
Give your list the names: “Claim” and “AccidentDate”.

® What is the average value of a claim?

Answers

myList <- list(Q)

myList$Claims <- rlnorm(100, log(10000))

myList$AccidentDate <- sample(seq.Date(as.Date("2000-01-01%), as.Date("2009-12-31"), length.out = 1000), |100)
mean(myList$Claims)

[1] 18004.31

