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And The Winner Is…?
How to Pick a Better Model
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Goodness-of-Fit
• Trying to answer question: How well does our model fit 

the data?
• Can be measured on training data or on holdout data
• By identifying areas of poor model fit, we may be able 

to improve our model
• A few ways to measure goodness-of-fit

– Squared or absolute error
– Likelihood/log-likelihood
– AIC/BIC
– Deviance/deviance residuals
– Pearson Chi-Squared
– Plot of actual versus predicted target
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Squared Error & Absolute Error
• For each record, calculate the squared or absolute 

difference between actual and predicted target variable

• Easy and intuitive, but generally inappropriate for 
insurance data, and can lead to selection of wrong 
model

• Squared error appropriate for Normal data, but 
insurance data generally not Normal
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Likelihood
• The probability, as predicted by our model, that 

what actually did occur would occur

• A GLM calculates the parameters that maximize 
likelihood

• Higher likelihood  better model fit (very simple 
terms)

• Problem with likelihood – adding a variable always 
improves likelihood
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AIC & BIC
• Akaike Information Criterion (AIC) = 

-2*(Log Likelihood) + 2*(Number of Parameters in 
Model)

• Bayesian Information Criterion (BIC) = 
-2*(Log Likelihood) + (Number of Parameters in 

Model)*ln(Number of Records in Dataset)

• Penalized measures of fit

• Good rule for deciding which variables to include –
unless a variables improves AIC or BIC, don’t include it

• BIC often too restrictive
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Deviance
• Saturated model – the model with the highest possible 

likelihood
– One indicator variable for each record, so model fits data perfectly

• Deviance = 2*(loglikelihood of saturated model –
loglikelihood of fitted model)

• GLMs minimize deviance

• Like squared error, but reflects shape of assumed 
distribution

• We generally fit skewed distributions to insurance data 
(Tweedie, gamma, etc), and thus deviance is more 
appropriate than squared error
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Deviance – in Math

• Poisson: 

• Gamma:

• Tweedie: 

• Normal:  
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Residuals
• Raw residual = yi – μi, where y is actual value of 

target variable and μ is predicted value

• In simple linear regression, residuals are supposed 
to be Normally distributed, and departure from 
Normality indicates poor fit

• For insurance data, raw residuals are highly 
skewed and generally not useful
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Deviance Residuals
• Square root of (weighted) deviance times the sign of 

actual minus predicted

• Measures amount by which the model missed, but 
reflects the assumed distribution

• Should be approximately Normally distributed, and far 
departure from Normality indicates that incorrect 
distribution has been chosen

• Ideally, there should be no discernable pattern in 
deviance residuals
– Model should miss randomly, not systemically
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Deviance Residual Diagnostics
• Histogram of deviance residuals – look for approximate 

Normality (bell-shape)
– Far departure from Normality generally indicates that incorrect 

distribution has been chosen
– Can also indicate poor fit

• Scatter plot of deviance residuals versus predicted 
target variable
– Should be uninformative cloud
– Pattern in this plot indicates incorrect distribution
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Deviance Residual Diagnostics
• Scatter plot of deviance residuals versus weight

– If weight statement is appropriate, then plot should be 
uninformative cloud

• Plot deviance residual for each record and look for 
outliers

• Feed deviance residuals into tree algorithm
– If deviance residuals are random, then tree should find no 

significant splits
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Example: Selecting Severity Model
• Goal is to select a distribution to model severity

• Two common choices – Gamma and Inverse 
Gaussian
– Gamma: V(μ) = μ2

– Variance of severity is proportional to mean severity squared
– Inverse Gaussian: V(μ) = μ3

– Variance of severity is proportional to mean severity cubed

• Two lines of business
– LOB1 is high-frequency, low-severity
– LOB2 is low-frequency, high-severity
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Deviance Residual Histogram

LOB1, Gamma GLM
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Deviance Residual Histogram

LOB1, IG GLM
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Deviance Residual Histogram

LOB1, Gamma GLM
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Deviance Residual Histogram

LOB1, IG GLM
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Deviance Residual Histogram

LOB2, Gamma GLM
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Deviance Residual Histogram

LOB2, IG GLM
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Deviance Residuals Caution
• Analysis of deviance residuals only applicable to 

continuous or somewhat-continuous data

• If building a frequency model, and every record has 
either 0 or 1 claim, then deviance residuals will be 
bimodal

• If can aggregate discrete data to make it somewhat 
continuous, then deviance residual diagnostics may 
be appropriate
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Actual vs Predicted Target
• Scatter plot of actual target variable (on y-axis) 

versus predicted target variable (on x-axis)

• If model fits well, then plot should produce a 
straight line, indicating close agreement between 
actual and predicted
– Focus on areas where model seems to miss

• If have many records, may need to bucket (such as 
into percentiles)

• Depending on scale, may need to plot on a log-log 
scale
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Example of Actual vs Predicted
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Example of Log of Actual vs Log of Predicted
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Benefit of Deviance over Squared Error
• Since squared error is the deviance of a regression 

model with a Normal distribution, using squared 
error for non-Normal data can lead to incorrect 
model being chosen

• We run two models on our dataset – one with a 
Tweedie distribution and one with a Normal 
distribution

• Data is far from Normal, but using squared error as 
a metric, the Normal GLM wins
– Even absolute error shows the Normal winning
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Log of Actual vs Log of Pred Target with Normal 
Linear Regression
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Measuring Internal Stability
• Process of determining how robust our model 

results are

• Useful measures:
– Out-of-sample (out-of-time) validation
– Cross-validation
– Plotting actual versus predicted target variable on 

holdout data
– Measures of influence (e.g. Cook’s Distance)
– Bootstrapping
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Out-of-Sample Validation
• Important to assess model fit on data that was not 

used in model construction

• Two approaches:
– Initially split dataset into training and test, build model on training, 

and measure fit on test
– Cross-validate – repeatedly use one subset to build and one to test

• Can randomly split dataset, or can split based on a 
control variable (like year)
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Assessing Stability over Time
• Generally want model results to be stable over time

• To assess temporal stability, can run the model on 
individual years and look for variability
– For example, if have 5 years, can run model on just 

years 1 and 2, then on just years 2 and 3, etc
– Ideally, the parameter estimates don’t change 

significantly across subsets
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Plot of Actual vs Predicted on Holdout
• Produce scatter plot of actual target variable versus 

predicted target variable as before, but use one set 
to build model and another set to plot

• Very simple diagnostic to produce and understand, 
and tells a powerful story
– Easy to explain to non-technical audience
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Example of Plot of Actual vs Predicted on Holdout 
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Bootstrapping
• Re-sampling technique that allows us to get more out 

of our data

• Start with a dataset and sample from it with 
replacement
– Some records will get pulled multiple times, and some will not get 

pulled at all

• Generally, we create a dataset with the same number 
of records as our original dataset

• Can create many bootstrap datasets, and each dataset 
can be thought of as an alternate reality
– Since each bootstrap is an alternate reality, we can use 

bootstrapping to construct confidence intervals
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Bootstrap CIs for Parameter Estimates

• GLMs produce confidence intervals for parameter 
estimates, but it is valuable to get a second opinion

• Create many bootstrap datasets, re-run the GLM on 
each dataset, and construct a confidence interval 
based on the resulting parameter estimates

• If bootstrap confidence interval is significantly wider 
than that produced by GLM, it is a sign that our results 
are overly-influenced by a few records
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Confidence Intervals for Lift Measures

• Can use bootstrapping to put confidence intervals around lift 
measures, like Gini indices

• In measuring lift, we seek to answer the question: Does 
Model A outperform Model B?

• If the answer is yes, then the second question is: How 
significant is the win?

• Say Model A has a Gini index of 15.90 and Model B has a 
Gini index of 15.40
– Model A has a Gini index that is 0.50 higher, but is that difference 

significant?

• Can also bootstrap quantile plots and double lift charts
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