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Roadmap 

 Review of Linear Models and Generalized Linear Models 

 Generalized Additive Models 

 Example 

 Mixed Effect Models 

 Example 

 Questions 

 

2 



Review of Linear Models 

Classical Linear Model 
 Response:  𝑌~𝑁 𝑋𝛽, 𝜎2  

 𝑋𝛽 is a linear function that 
describes how the expected 
values vary based on 
characteristics in the data 

 Linear:  𝛽0 + 𝛽1𝑋1
2 + 𝑠𝑖𝑛 𝛽2𝑋2  

 Non-linear:  𝛽1𝑋1𝑒
𝛽2𝑋2 

 Constant Variance 
 

Generalized Linear Model 
 Response:  Poisson, Gamma, 

Binomial, etc. 

 𝑌~𝐹 𝜋, 𝑅  

 Expected Value:  

  𝐺 𝐸 𝑌 −1 = 𝑋𝛽 

 Variance is a function of 
expected value 

 Responses are independent 
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Generalized Additive Models 

 Linear predictor has a more general form 

 𝐸 𝑌|𝑋1, 𝑋2, ⋯𝑋𝑝 = 𝛼 + 𝑓1 𝑋1 + 𝑓2 𝑋2 + ⋯+ 𝑓𝑝 𝑋𝑝  

 

 𝑓𝑖 𝑋𝑖  are non-parametric smoother functions 

 Smoothing Splines 

 Kernel Smoothers 

 Local Linear Regression 

 But can also be parametric functions, too 

 

4 



What Does That Mean in Real Life? 
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• Fit models with less assumptions 

• No ‘nice’ polynomial shapes are necessary 

• No variance assumptions 



When Can I Fit a GAM? 

 You can fit a GAM with any data where you might try fitting LMs, GLMs, 

and GLMMs 

 GAMs are more general and with less assumptions 

 Common Examples 

 LDF fitting 

 Large data sets with complicated interaction effects 

 Models with many parameters but not a lot of data per parameter 

 Fitting a smoothed trend line that allows the trend to vary by year 
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GAM Tradeoffs 

Advantages 
1. Useful for non-parametric and semi-

parametric data 

2. Useful when data doesn’t fit LM/GLM 

assumptions 

3. Can paste splines directly into Excel  

 

Disadvantages 
1. Output may be more difficult to 

interpret to regulators and business 

side  

2. Must be wary of over-fitting 
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Let Software Do the Hard Work! 

R  

 Packages 

 gam 

 mgcv – this package automatically 

selects smoothing factors 

SAS 

 PROC GAM 

 SAS 9.2 
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Simple GAM Example 

 Smoothing to data can provide a very good fit 
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GAM Fitting to Noisy Data 

 Smoothing to data can sometimes cause over-fitting though 

 If a good parametric fit exists, use that instead 
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Amount of Smoothing Can be Varied 

 DF = Degrees of Freedom = the number of parameters we are using 

to smooth 

 A GAM ranges from a linear curve to fitting each point exactly 
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Some R Code for the Curious 

 x <- 1:10 

 y <- log(x) 

 

 plot( x, y, type='l' ) 

 

 fit.lm <- lm( y ~ x ) 

 lines( predict( fit.lm ), col='blue' ) 

 

 library(gam) 

 fit.gam <- gam( y ~ s(x, df=5) ) 

 lines( predict( fit.gam ), col='red' ) 
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Splines 

 GAMs work by generating splines 

 These can also be copied and 

pasted into Excel 

 

 In R: 

 library(splines) 

 ns( 1:20, df=3 ) 
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GAM Practical Application: LDF Fitting 

 LDF patterns – Difficult to find a good parametric curve 

 A GAM can be used to help smooth the curve to the data 

 Will show an approach here that combines best features of two 
published models:  the Inverse Power Curve (Extrapolating, 

Interpolating, and Smoothing Development Factors, Sherman, 

1984) and England and Verrall’s GAM model (A Flexible Framework 

For Stochastic Claims Reserving, 2001) 
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GAM Practical Application: LDF Fitting 

 Inverse Power Curve 

 Good: Simple procedure that can fit a portion of the LDFs well 

 Bad: Struggles in many lines to provide a good fit to the entire curve 

 England & Verrall’s GAM Model 

 Good: Uses a GAM to get a nice fit to the incremental loss pattern (within the 

common GLM loss development framework) 

 Bad:  

 Negative values difficult to deal with 

 Some of the resulting LDFs can be difficult to interpret when comparing to 

the empirical LDFs 

 More difficult to implement: Need to find correct Tweedie power 

 Can’t implement in Excel 

 Hard to incorporate credibility (teaser) 
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Proposed Approach 

 Smoothed Inverse Power Curve using GAMs (Korn 2015?) 

 

 Inverse Power Curve: 

 log(LDF – 1) = A + B log(t) 

 

 Smoothed Inverse Power Curve: 

 log(LDF – 1) = A + s( log(t) ) 

 Where “s” means GAM smoothing 

 (Note the smoothing is done on log(t)) 
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Smoothed Inverse Power Curve 

 Comparison of two approaches on 
simulated data 

 This same pattern has been observed 
on actual data, where the inverse 
power curve has trouble making the 
“turn” 

 The smoothed inverse power curve 
does a good job of smoothing out the 
volatility  

 (No, I did not fish for a good example) 
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Still Interested in GAMs? 

 Elements of Statistical Learning 

 By Hastie and Tibshirani 

 Free download:  

http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf 

 

 Stochastic Claims Reserving in General Insurance 

 By England and Verrall 
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Review of Linear Models (Again) 

Classical Linear Model 
 Response:  𝑌~𝑁 𝑋𝛽, 𝜎2  

 𝑋𝛽 is a linear function that 
describes how the expected 
values vary based on 
characteristics in the data 

 Linear:  𝛽0 + 𝛽1𝑋1
2 + 𝑠𝑖𝑛 𝛽2𝑋2  

 Non-linear:  𝛽1𝑋1𝑒
𝛽2𝑋2 

 Constant Variance 
 

Generalized Linear Model 
 Response:  Poisson, Gamma, 

Binomial, etc. 

 𝑌~𝐹 𝜋, 𝑅  

 Expected Value:  

  𝐺 𝐸 𝑌 −1 = 𝑋𝛽 

 Variance is a function of 
expected value 

 Responses are independent 
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Correlated Losses 

 But in the real world losses may not be independent 

 Why? 

 Hierarchical Data – Correlation can exist among loss data when the risks 
come from the same territory or region 

 

 

 

 Repeated Measures - Unless you have 0% retention, correlation can exist 
among records as some of them will represent the same risk repeatedly 
observed over time 
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Mixed Effect Models to the Rescue! 

 

 Linear Predictor contains fixed effects and random effects 

 𝑋𝛽 + 𝑍𝑏 

 𝑍~𝑁 0, 𝐺  

 G is a covariance matrix that can reflect the extra variability and the correlation within the 
levels of a territory or across time  

 Flexible enough to specify different G side covariance structures 

 Response can still be Normal or from Exponential Class 
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LM 

GLM 

LMM 

GLMM 



What if I Use a LM/GLM Anyway?  

Linear Model 
 LM thinks it estimates this: 

𝑌~𝑁 𝑋𝛽, 𝑅  

 But it actually estimates this: 

𝑌~𝑁 𝑋𝛽, 𝐺 + 𝑅  

 Result: correct parameter estimates 
but incorrect covariance estimate 

and distorted alpha levels 

Generalized Linear Model 
 GLM thinks it estimates this: 

𝑌~𝐹 𝜋, 𝑅  

 But it actually estimates this: 

𝑌~𝐹 𝜋  , 𝑇𝐺𝑇 + 𝑅  

 Result:  Incorrect parameter estimates 
and incorrect covariance structure 

and distorted alpha levels 

 

22 



Don’t Do Heavy Math by Yourself!   

Use Software! 

R 

 Package:  lme4 

 Can fit common distributions but not 

the over-dispersed Poisson or Tweedie 

 

SAS 

 PROC GLIMMIX 

 SAS 9.1 and later 

 Can fit common distributions and over-

dispersed Poisson 

 Uncertain about Tweedie 
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Simulation Example - GLMM 

 Random effects: 

  Groups    Name        Variance Std.Dev. Corr 

  territory (Intercept)    0.1525   0.3905        

                         A1           0.3756   0.6129   0.27 

 Number of obs: 20000, groups:  territory, 100 

 

 Fixed effects: 

                   Estimate Std. Error z value Pr(>|z|)     

 (Intercept)  2.03836    0.03917   52.03   <2e-16 *** 

 A1                 0.61291    0.06135    9.99   <2e-16 *** 
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Simulation Example - GLM 

 Coefficients: 

                       Estimate  Std. Error   z value Pr(>|z|)     

 (Intercept) 2.303576   0.002483   927.8   <2e-16 *** 

 A1               0.671555   0.002483   270.5   <2e-16 *** 
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Actual GLMM GLM

Base Class 7.4 7.6 10.0

A1 12.2 14.1 19.6

Expected Counts



Practical Application – Credibility Weighting 

 A GLMM with a normal distribution and an identity link will produce 

identical results as the Buhlmann-Straub method 

 Benefits of GLMM: 

 Easier to automate – no need to manually calculate the 

within and between variances 

More flexibility 

More complicated regression models, such as hierarchal 

and multi-dimensional 

Ability to handle different link functions (e.g. log, logit),  

non-normal errors, and continuous variables 

 A disadvantage is that a GLMM is harder to use from Excel 
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Credibility Weighting of Expected Loss Ratios/Costs 

 Don’t just credibility weight the IBNR portion! – This will 

be credibility weighting only half of the data.   

 

 Don’t credibility weight the selected ultimates from a BF 

(or similar) method! – That would be including what did 

NOT happen (and lowering the variance = too much 

credibility). 

 

 Use the observed experience! 
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Coin Flipping Analogy 

 First Time:  20 Flips 

 15 Heads, 5 Tails = 75% Heads 

 

 Second Time (Same Coin):  5 Flips  (out of 20) 

 0 Heads, 5 Tails 

 IBNR (BF Method):  11.25 Heads, 3.75 Tails 

 Ultimate:  11.25 Heads, 8.75 Tails = 56.25% Heads 

 

 What’s the variance?? 
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 Instead, use a Cape-Cod-like method: 

 

 LR per Year = Reported Losses / Used Premium (= chain ladder) 

 

 Initial Weight per Year = Used Premium 

 

 Then apply an off-balance factor so that the total weight for 

each segment equals the actual premium 
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Credibility Weighting of Expected Loss Ratios/Costs 



 Weights: 

 GLMMs use the same weight for credibility as they do for the regression 

 For calculating the variances, the weight is assumed to be the number of observations 

 Premium Weights = Full Credibility 

 Claim Count Weights = Inconsistencies 

 

 To reconcile:  (Really use weights as above instead of Premium) 

 K = Claim Count / Premium (for all policies) 

 For each policy, Weight(i) = Premium(i) x K 

 Total weight will be consistent with true number of observations and we will still be 

weighting by premium 
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Credibility Weighting of Expected Loss Ratios/Costs 



 Structure of the GLMM: 

 

 Normal/Normal (is not the same as assuming that loss ratios are 

normally distributed) 

 

 Link function: 

Log link:  Multiplicative  (dealing with 0s) 

Identity link:  Additive 
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Credibility Weighting of Expected Loss Ratios/Costs 



 library(lme4) 

 fit <- glmer( lr ~ ( 1 | sic1 ) + ( 1 | sic2 ), weights=w, data=mydata, 

family=gaussian(link=‘log’) ) 

 fixef(fit) 

 ranef(fit) 
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Some R Code for the Curious 



Another Practical Use – Credibility 

Weighted Interaction Terms 

 State x Industry Example: 

 No interaction:  If New York is running 20% worse overall, it will be 20% worse in every single industry 

 Not Enough Information! 

 

 With interaction term:  Every single state x industry combination will be assigned a loss ratio based 
on its experience alone 

 Not Enough Data! 

 

 Credibility weighted interaction term:  If New York is running 20% worse overall, this will be the 
complement of credibility for each industry 

 Makes the most out of limited data 

 In R:  “( 1 | state:industry )” 
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Uneven Hierarchies 

 A GLM will not produce coefficient values 

for C1 and D1 since they are redundant 

 A GLMM will  Double Credibility! 

 

 To handle, create a dummy variable that is 1 

for A & B cells, and 0 for C & D cells 

 For the lowest subgroup, create the random 
effect as a slope parameter on this dummy 
variable 

 This will cause C1 and D1 to not be assigned 
coefficients 

 In R:  ( 1 | group ) + ( dummy | subgroup ) 
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Other Practical Uses 

 Incorporating credibility into pricing or other GLMs 

 Credibility weighting of trend (if you have enough data) 
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Still Interested in GLMMs? 

 Further Reading: 

 Generalized Linear Mixed Models:  Modern Concepts, Methods and 

Applications 

 By Walter Stroup 

 Examples of SAS 

 Mixed-Effect Models in S and S-Plus 

 By Pinheiro and Bates 

 Written for R 
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