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Review of Linear Models

Classical Linear Model Generalized Linear Model
» Response: Y~N(XB,0%) » Response: Poisson, Gamma,
. . . Binomial, etc.
» Xp is a linear function that
describes how the expected » Y~F(m, R)

values vary based on
characteristics in the data B
GE[YD™ =Xp

. . 2 .
> Llnea.r. Bo & PrX1 + sin(B2X3) » Variance is a function of
» Non-linear: B,X,ef2Xz expected value

» Constant Variance » Responses are independent

» Expected Value:



Generalized Additive Models

» Linear predictor has a more general form
> E(Y|Xy, Xy Xp) = a+ fi(X) + LX) + -+ f,(Xp)

» f:(X;) are non-parametric smoother functions
» Smoothing Splines
» Kernel Smoothers
» Local Linear Regression
>

But can also be parametric functions, too



What Does That Mean in Real Life?
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* Fit models with less assumptions
* No ‘nice’ polynomial shapes are necessary
 No variance assumptions



When Can | Fit a GAM?

» You can fit a GAM with any data where you might ry fitting LMs, GLMs,
and GLMMs

» GAMs are more general and with less assumptions

» Common Examples
LDF fitting

>

» Large data sets with complicated interaction effects

» Models with many parameters but not a lot of data per parameter
>

Fitting a smoothed trend line that allows the frend to vary by year



GAM Tradeoffs

Advantages Disadvantages
1. Useful for non-parametric and semi- 1. Output may be more difficult to
parametric data interpret to regulators and business
2. Useful when data doesn’t fit LM/GLM side
assumptions 2. Must be wary of over-fitting

3. Can paste splines directly into Excel



Let Software Do the Hard Work!

R SAS
» Packages » PROC GAM
» gam » SAS 9.2

» mgcv — this package automatically
selects smoothing factors



Simple GAM Example

2 < =] =] 10

o

» Smoothing to data can provide a very good fit




GAM Fitting to Noisy Data

Data
Actual Pattern
OLS to Log(x)

1

» Smoothing to data can sometimes cause over-fitting though

» If a good parametric fit exists, use that instead



Amount of Smoothing Can be Varied

— Data
==  Actual Pattern
=2~ — GAM (DF=8)

—— GAM (DF=2)

=] =] 10

» DF = Degrees of Freedom = the number of parameters we are using
to smooth

» A GAMranges from a linear curve to fitting each point exactly



Some R Code for the Curious

» x<-1:10

> y<-log(x)

plot( x, vy, type="1")

» fitIm<-Im(y~x)

» lines( predict( fit.Im ), col="blue')

» library(gam)

» fit.gam <-gam(y ~ s(x, df=5) )

» lines( predict( fit.gam ), col=red')



Splines
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» GAMs work by generating splines

04

: » These can also be copied and
pasted into Excel

0.2
|

Value

= » InR:
» library(splines)
» ns( 1:20, df=3)

-0.2

04




GAM Practical Application: LDF Fitting

» LDF patterns — Difficult to find a good parametric curve
» A GAM can be used 1o help smooth the curve to the data

» Will show an approach here that combines best features of two
published models: the Inverse Power Curve (Extrapolating,
Interpolating, and Smoothing Development Factors, Sherman,
1984) and England and Verrall’'s GAM model (A Flexible Framework
For Stochastic Claims Reserving, 2001)



GAM Practical Application: LDF Fitting

» Inverse Power Curve

» Good: Simple procedure that can fit a portion of the LDFs well

» Bad: Struggles in many lines to provide a good fit to the entire curve
» England & Verrall's GAM Model

» Good: Uses a GAM to get a nice fit to the incremental loss pattern (within the
common GLM loss development framework)

» Bad:
» Negative values difficult to deal with

» Some of the resulting LDFs can be difficult to interpret when comparing to
the empirical LDFs

» More difficult to implement: Need to find correct Tweedie power
» Can'timplement in Excel

» Hard to incorporate credibility (teaser)



Proposed Approach

» Smoothed Inverse Power Curve using GAMs (Korn 20152

» Inverse Power Curve;
» log(LDF-1) =A + B log(t)

» Smoothed Inverse Power Curve:
» log(LDF-1) = A+ s(log(t) )
» Where “s” means GAM smoothing

» (Note the smoothing is done on log(t))



LDF
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Smoothed Inverse Power Curve

—— Empirical

""""" Actual Pattern

—— Inv Power Curve

—— Smoothed Inv Power Curve

Comparison of two approaches on
simulated data

This same pattern has been observed
on actual data, where the inverse
power curve has trouble making the
“turn”

The smoothed inverse power curve
does a good job of smoothing out the
volatility

(No, | did not fish for a good example)




Still Interested in GAMs?

» Elements of Statistical Learning

» By Hastie and Tibshirani

» Free download:
http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII print4.pdf

» Stochastic Claims Reserving in General Insurance

» By England and Verrall


http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf
http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf

Review of Linear Models (Again)

Classical Linear Model Generalized Linear Model
» Response: Y~N(XB,0%) » Response: Poisson, Gamma,
. . . Binomial, etc.
» Xp is a linear function that
describes how the expected » Y~F(m, R)

values vary based on
characteristics in the data B
GE[YD™ =Xp

. . 2 .
> Llnea.r. Bo & PrX1 + sin(B2X3) » Variance is a function of
» Non-linear: B,X,ef2Xz expected value

» Constant Variance » Responses are independent

» Expected Value:



Correlated Losses

» Butin the real world losses may not be independent

» Whye
» Hierarchical Data — Correlation can exist among loss data when the risks
come from the same territory or region -

A
AA -

» Repeated Measures - Unless you have 0% retention, correlation can exist
among records as some of them will represent the same risk repeatedly
observed over time




Mixed Effect Models to the Rescue!

» Linear Predictor contains fixed effects and random effects
» XB+Zb
» Z~N(0,G)

» G is acovariance matrix that can reflect the extra variability and the correlation within the
levels of a territory or across time

» Flexible enough to specify different G side covariance structures

» Response can still be Normal or from Exponential Class

LM LMM
GLM GLMM




What if | Use a LM/GLM Anyway?

Linear Model

» LM thinks it estimates this:
Y~N(XB,R)

» But it actually estimates this:
Y~N(XB,G +R)

» Result: correct parameter estimates
but incorrect covariance estimate
and distorted alpha levels

Generalized Linear Model

» GLM thinks it estimates this:
Y~F(m, R)

» But it actually estimates this:
Y~F(i ,TGT + R)

» Result: Incorrect parameter estimates
and incorrect covariance structure
and distorted alpha levels




Don’t Do Heavy Math by Yourself!

Use Softwarel

R SAS
» Package: Ime4 » PROC GLIMMIX
» Can fit common distributions but not » SAS 9.1 and later

the over-dispersed Poisson or Tweedie » Can fit common distributions and over-

dispersed Poisson

» Uncertain about Tweedie



Simulation Example - GLMM

Random effects:
Groups Name Variance Std.Dev. Corr
territory (Intercept) 0.1525 0.3905

Al 0.3756 0.6129 0.27
Number of obs: 20000, groups: territory, 100

vV v . v.v Y

Fixed effects:

Estimate Std. Error z value Pr(>|z|)
(Infercept) 2.03836 0.03917 52.03 <2e-16 ***
Al 0.61291 0.06135 9.99 <2e-16***

vV v v Yy



Simulation Example - GLM

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 2.303576 0.002483 927.8 <2e-16 ***
Al 0.671555 0.002483 270.5 <2e-16 ***

vV v v Vv

Expected Counts

Actual GLMM GLM
Base Class 7.4 7.6 10.0
Al 12.2 14.1 19.6



Practical Application — Credibility Weighting

» A GLMM with a normal distribution and an identity link will produce
identical results as the Buhlmann-Straulb method

» Benefits of GLMM:

» Easier to automate — no need to manually calculate the
within and between variances

» More flexibility

» More complicated regression models, such as hierarchal
and multi-dimensional

» Ability to handle different link functions (e.g. log, logit),
non-normal errors, and continuous variables

» A disadvantage is that a GLMM is harder to use from Excel



Credibility Weighting of Expected Loss Ratios/Costs

» Don't just credibility weight the IBNR portion! — This will
be credibility weighting only half of the data.

» Don't credibility weight the selected ultimates from a BF
(or similar) method! — That would be including what did
NOT happen (and lowering the variance = foo much
credibility).

» Use the observed experiencel




Coin Flipping Analogy

» First Time: 20 Flips
» 15 Heads, 5 Tails = 75% Heads

» Second Time (Same Coin): 5 Flips (out of 20)
» O Heads, 5 Tails
» IBNR (BF Method): 11.25 Heads, 3.75 Tails
» Ultimate: 11.25 Heads, 8.75 Tails = 56.25% Heads

» What's the variaonce<¢?



Credibility Weighting of Expected Loss Ratios/Costs

» Instead, use a Cape-Cod-like method:

» LR per Year = Reported Losses / Used Premium (= chain ladder)

» Initial Weight per Year = Used Premium

» Then apply an off-balance factor so that the total weight for
each segment equals the actual premium



Credibility Weighting of Expected Loss Ratios/Costs

» Weights:
» GLMMs use the same weight for credibility as they do for the regression
» For calculating the variances, the weight is assumed to be the number of observations
» Premium Weights = Full Credibility

» Claim Count Weights = Inconsistencies

» Toreconcile: (Really use weights as above instead of Premium)
» K = Claim Count / Premium (for all policies)
» For each policy, Weight(i) = Premium(i) x K

» Total weight will be consistent with frue number of observations and we will still be
weighting by premium



Credibility Weighting of Expected Loss Ratios/Costs

» Structure of the GLMM:

» Normal/Normal (is not the same as assuming that loss ratios are
normally distributed)

» Link function:
»Log link: Multiplicative (dealing with Os)
» Idenftity link: Addifive



Some R Code for the Curious

» library(lme4)

» fit<-glmer(Ir~ (1| sicl)+ (1| sic2), weights=w, data=mydata,
family=gaussian(link=‘log’) )

» fixef(fit)
» ranef(fit)



Another Practical Use — Credibility

Weighted Interaction Terms

» State x Industry Example:
» No inferaction: If New York is running 20% worse overall, it will be 20% worse in every single industry

» Not Enough Information!

» With inferaction term: Every single state x industry combination will be assigned a loss ratio based
on its experience alone

» Not Enough Datal

» Credibility weighted interaction ferm: If New York is running 20% worse overall, this will be the
complement of credibility for each industry

» Makes the most out of limited data

» InR: “( 1 | state:industry )"



Uneven Hierarchies

/|

/|

A1

A2

B1

B2

C1

D1

A GLM will not produce coefficient values
for C1 and D1 since they are redundant

A GLMM will > Double Credibility!

To handle, create a dummy variable that is 1
for A & B cells, and O for C & D cells

For the lowest subgroup, create the random
effect as a slope parameter on this dummy
variable

This will cause C1 and D1 to not be assigned
coefficients

InR: (1 | group ) + ( dummy | subgroup )




Other Practical Uses

» |ncorporating credibility into pricing or other GLMs
» Credibility weighting of trend (if you have enough data)



Still Interested in GLMMs?

» Further Reading:

» Generalized Linear Mixed Models: Modern Concepts, Methods and
Applications

» By Walter Stroup
» Examples of SAS

» Mixed-Effect Models in S and S-Plus
» By Pinheiro and Bates

» Written forR



