And The Winner Is…?
How to Pick a Better Model
Model Lift – 2015 CAS RPM Seminar

Motivation
• Models that appear to be strong may have weaknesses
 – Fit may not be good
 – Model may be overfit
 – Wrong distribution may have been chosen
 – Results may not be stable across data subsets or over time
 – Results may be highly influenced by several records
 – Model may underperform the status quo

Some Models Used by Actuaries
• Linear regression
• Exponential regression
• Logistic regression
• Minimum bias procedures
• Generalized linear models
• Classification and regression trees
• Clustering procedures
Understanding & Validating a Model

- **Model Lift**
 - How well does the model differentiate between best and worst risks?
 - Does the model help prevent adverse selection?
 - Is the model better than the current rating plan?

- **Goodness of Fit**
 - What kind of model statistics are available, and how do you interpret them?
 - What kind of residual plots should you consider, and how do you interpret them?
 - What are some considerations regarding actual versus predicted plots?

- **Internal Stability**
 - How well does the model perform on other data?
 - How will the model perform over time?
 - How reliable are the model’s parameter estimates?

Model Lift

- Ability to differentiate between low and high cost policyholders
 - Sometimes called the “economic value” of the model

- Some tools for measuring and illustrating model lift
 - Simple Quantile plots
 - Double lift charts
 - Gini index
 - Loss ratio charts

Model Lift – Simple Quantile Plots

- Creating a quantile plot
 - Use holdout sample.
 - Sort data based on predicted value (frequency, severity, loss cost).
 - Subdivide sorted data into quantiles (quartiles, quintiles, deciles) with equal weight (exposure, claim count).
 - Calculate average actual value and predicted value for each quantile and index to overall average.
Model Lift – Simple Quantile Plots

- Sorted by Loss Costs
- Underlying Current Rates

- Sorted by Model’s Predicted Loss Costs

- Sorted by Loss Costs
- Underlying Current Rates

- Sorted by Model’s Predicted Loss Costs

- Underlying Current Rates

- Model Lift – Double Lift Charts

- Creating a double lift chart
 - Sort data by ratio of model prediction to current premium.
 - Subdivide sorted data into quantiles with equal exposure.
 - For each quantile calculate average actual loss cost, average model predicted loss cost and the average loss cost underlying the current manual premium .
 - Index the quantile averages to the overall averages.

- Economics – The Gini Index

- Gini coefficient or Gini ratio
 - Named after Corrado Gini

- Measure of income inequality
 - Horizontal axis = percentage of country’s population
 - Vertical axis = percentage of country’s income
 - A = Area between line of equality and Lorenz Curve
 - B = Area beneath Lorenz Curve
 - Gini index = A / (A + B)
Model Lift – Simple Gini Index

- Adapting to car insurance
 - Assume claim frequency = 5%

- “The perfect model”
 - Prediction = actual loss, which is $0 for 95% of vehicles insured.
 - Sort holdout data set by model prediction.
 - Horizontal axis = percentage of total earned car years.
 - Vertical axis = Percentage of total incurred loss.
 - Gini Index = \(\frac{A}{A+B} \) is very high.

Model Lift – Simple Gini Index

- Exercise:
 - Model X prediction = expected loss cost
 - Model Y prediction = 0.5 (expected loss cost)
 - Model Z prediction = 2.0 (expected loss cost)
 - Which model has the highest Gini index?

- Model A has a Gini index of 15.9 and B has a Gini index of 15.4
 - Is that difference significant, or is it just a quirk of the holdout data?

Model Lift – Loss Ratio Charts

- Lift charts and Gini index
 - May be unfamiliar to some stakeholders

- Loss ratios
 - Widely used and understood in the industry

- Ranking by predicted loss cost
 - Rank data into quantiles by predicted model loss cost
 - Calculate loss ratio for each quantile
Model Lift – Summary

• Simple Quantile plots
 – Illustrate how well the model helps prevent adverse selection

• Double lift charts
 – Compare competing models
 – Compare new model against current rating plan

• Simple Gini index
 – Summarizes model lift into one number

• Loss ratio charts
 – Puts lift in context most people in insurance industry can understand
 – Can be distorted by redundancy or inadequacy of current rating plan

References

• May, E., Handbook of Credit Scoring, Global Professional Publishing, 2001

• Parr Rud, O., Data Mining Cookbook, John Wiley & Sons, 2001

Contact Information

Hernan L. Medina, CPCU
Director, Analytical Data Management
ISO Insurance Programs and Analytic Services

hmedina@iso.com
www.verisk.com/insurance