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The systematic/random conjecture 

• Multivariate regression has been taught as 

Y = X.A + ε 

(Note: this is the “fancy” version of Y = signal + 
noise)1 

• Signal + noise = systematic and random 
components 

 

1 Introduction to Ratemaking Multivariate Methods 
http://www.casact.org/education/rpm/2009/handouts/cooksey.pdf 
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The systematic/random conjecture 

If the MLR assumptions don’t work well for 

insurance, then change them! With the same 

general approach, but the following assumptions, 

you’ve transitioned from MLRs to GLMs. 
1. (Random Component) Observations are independent, but 
come from one of the family of exponential distributions. 

2. (Systematic Component) X.A is called the linear predictor, or η. 

3. (Link function) The expected value of Y, E(Y), is equal to g-1(η). 

1 Introduction to Ratemaking Multivariate Methods 
http://www.casact.org/education/rpm/2009/handouts/cooksey.pdf 
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The systematic/random conjecture 

• Is this appropriate? 

– Are the components separable 

• Signal and noise 

• Systematic and random 

– Do modern regression techniques achieve this? 

– Is maximum likelihood regression stable? 

– How can we tell? 

• We need a controlled experiment 
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Experimental Design 

• Aim 

– Design of a controlled experiment to test how 
much data noise impacts regression 

• Data 

• Data strategy 

• Regression approach 

• Comparison metrics 
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Experimental Design 

• Data 

– One experience data set 

– PPA Collision coverage of 3 years 

– 1.8M years exposure, 75k claims 

– Very well-behaved data 
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Experimental Design 

• Data Strategy 
– Divide experience data into 2 samples 

• Exclusively at random 

• Each sample has the same joint distribution of variables 

• Each sample has 
– 900k years exposure 

– 37.5k claims 
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  Claim Frequency Claim Severity Loss Cost 

Sample 1 4.19% 3680 155 

Sample 2 4.16% 3718 154 



Experimental Design 

• Data Strategy 
– Variables selection 

• Top 50 variables by signal strength chosen by 
– Claim frequency 

– Claim severity 

– Loss cost 

• Based on all the data 

– Variables bucketing (binning) automatically 
• Categorical variables 

– Categories that have at least 10% exposure 

• Ordinal variables 
– Optimal buckets by signal type (up to 10 but usually much less - 2)  

• Based on all the data 
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Experimental Design 

• Variable bucketing 
– Driver age buckets for claims frequency – relative exposure 

• Less buckets for severity and loss cost 

– Sample consistency(unsurprising) 
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Experimental Design 

• Regression Approach 

– Divide each sample into training and validation 
data 

• 70%-30% at random 

– Compare traditional and modern methods 

• GLM 

• Matrix ensemble 

• Claim Frequency 
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Experimental Design 

• GLM 
– Log link 
– Poisson, gamma, Tweedie distributions 
– Forward stepwise model selection 

• Matrix ensemble 
– Members (base learners) placed in a matrix so that 

• Columns perform variance reduction 
• Rows perform bias reduction 
• Talon base learner 

– Un-optimized choices 
• 10% exposure for claim frequency 
• 4000 claims for severity and loss cost 
• Matrix size is 10 columns and 50 rows 
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Experimental Design 

• Selecting models 
– GLM based on: 

• AIC as calculated on the validation data 

• BIC as calculated on the validation data 

• The minimum of the appropriate deviance as calculated 
on the validation data.  

• AIC as calculated on the training data 

• BIC as calculated on the training data 

– Matrix ensemble 
• No choice possible – model is self defining 
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Experimental Design 

• Comparison metrics 

– For each model chosen apply the model to both 
data samples and then compare observed 
estimates 

• 𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛= 2 𝑒1−𝑒2
𝑒1+𝑒2

  

• 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑒1 − 𝑒2  

Where 𝑒1, 𝑒2 represent estimates from sample 1 
and 2 based models 
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Experimental Design 

• Accumulate 
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Dispersion   Difference   

-0.5 < -0.5 -200 < -200 

-0.2 [-0.5,-0.2) -150 [-200,-150) 

-0.1 [-0.2,-0.1) -100 [-150,-100) 

-0.05 [-0.1,-0.2) -75 [-100,-75) 

-0.02 [-0.05,-0.02) -50 (-75,-50) 

-0.01 [-0.02,-0.02) -20 [-50,-20) 

0 (-0.01,0.01) 0 (-20,20) 

0.01 [0.01.0.02) 20 [20,50) 

0.02 [0.02,0.05) 50 [50,75) 

0.05 [0.05,0.1) 75 [75,100) 

0.1 [0.1,0.2) 100 [100,150] 

0.2 [0.2.0.5] 150 [150,200) 

0.5 > 0.5 200 >200 



Results – Claim Frequency 

• Select optimum GLM models 
– How many variables to include 
– Note training and validation based AIC and BIC 
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GLM Training 

AIC 

GLM Training 

BIC 

GLM 

Validation AIC 

GLM 

Validation BIC 

GLM Validation 

Deviance 

Sample 1 

Iteration 
35 15 18 15 42 

Sample 2 

Iteration 
32 14 18 13 36 



Results – Claim Frequency 

• Dispersion of estimates 

– Based on applying pairs of models to all the data 
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Dispersion GLM 

Training AIC 

GLM 

Training BIC 

GLM 

Validation 

AIC 

GLM 

Validation 

BIC 

GLM 

Validation 

Deviance 

Ensemble 

-0.5 0% 0% 0% 0% 0% 0% 

-0.2 3% 3% 4% 6% 3% 0% 

-0.1 11% 16% 11% 13% 11% 5% 

-0.05 12% 11% 12% 13% 12% 14% 

-0.02 10% 7% 9% 8% 10% 15% 

-0.01 4% 3% 3% 3% 4% 6% 

0 7% 6% 7% 5% 7% 13% 

0.01 4% 3% 4% 3% 4% 6% 

0.02 11% 10% 11% 7% 11% 16% 

0.05 16% 17% 16% 12% 16% 18% 

0.1 17% 19% 17% 22% 17% 7% 

0.2 5% 5% 5% 8% 5% 0% 

0.5 0% 0% 0% 0% 0% 0% 

Mean 8.94% 9.85% 9.31% 11.19% 8.86% 5.13% 



Results – Claim Frequency 

• Maximum, minimum observed values 
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GLM 

Training 

AIC 

GLM 

Training 

BIC 

GLM 

Validation 

AIC 

GLM 

Validation 

BIC 

GLM 

Validation 

Deviance 

Ensemble 

Model 1 

Min 0.003922 0.009872 0.007223 0.010492 0.003896 0.01135 

Max 1.811758 1.362593 1.880287 1.298176 1.8865 0.10384 

Model 2 

Min 0.000016 0.011671 0.010372 0.011671 0.000016 0.01338 

Max 1.548286 1.303763 1.535855 1.303763 1.510621 0.10639 

Ratios 

Model 1 462 138 260 124 484 9 

Model 2 96768 112 148 112 94414 8 



Discussion 

• Forward stepwise procedure 

– “I can fit better models than that!” 

– Better? 

• Data is given – samples 1 and 2 

• Used conservative variable bucketing approach 
– Relatively few beta values 

• Forward stepwise very close to forward stepwise by 3 

– What would better mean? 
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Discussion 

• Lower AIC 
– Proposed by many practitioners 
– Fits a lot of variables 

• Approximately 30 for frequency 

– Different when calculated on validation data 
• Far fewer variables indicated 
• Is not a reliable complexity measure 

– Models are not more consistent 

• Lower BIC 
– Heavier penalty for complexity 
– Same problem as AIC 
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Discussion 

• Lower deviance 

– Can’t use on training data 

• Deviance decreases as more variables as included 

– Validation based calculation 

• Also indicated lots of variables 

– Models are not more consistent 
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Discussion 

• Better P values (What are P values?) 
– Use splines 

• Increases beta values 

• Allows better fit to training data 

• Models are not more consistent 

• Smaller residuals 
– Proxy for deviance 

• Better likelihood 
– Proxy for deviance 
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Could We See This Coming? 

23 



Discussion 

• What happens if we average the models 
– Average of 5 sample 1 models v sample 2 models 

• A naïve ensemble 
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Dispersion       

Claim Frequency Severity Loss Cost 

-0.5 0% 0% 0% 

-0.2 1% 0% 3% 

-0.1 9% 1% 8% 

-0.05 13% 12% 11% 

-0.02 11% 22% 9% 

-0.01 4% 9% 3% 

0 8% 19% 8% 

0.01 4% 9% 4% 

0.02 12% 18% 12% 

0.05 18% 10% 18% 

0.1 16% 1% 20% 

0.2 3% 0% 4% 

0.5 0% 0% 0% 

      

Mean 7.71% 3.40% 8.82% 

Original Mean 8.86%-11.19% 4.03%-5.52% 11.17%-17.63% 



Linear – as in GLM 

• Generalised LINEAR Model 

– What does that mean? 

• Regression on Claim Frequency using age and car age 

– Observed data 
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Generalised Linear models for Non-life Pricing – Overlooked Facts and Implications 
A Report from GIRO Advanced Pricing Techniques Working Party 



Linear 

• Using Poisson and log link 

 

 

 

• Old-Old now Increased to 0.25 

 

 

 

 

• Why does Young New change? 
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When It’s Not Poisson 
Create a Poisson Data Generating Function 

27 Modelling Count Data; Joseph Hilbe 



Can We Find the Model - Yes 
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Remove a Variable – x2 

• It’s Over-dispersed – No Longer Poisson 

• Can be Modelled Correctly using the Negative Binomial 
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Implications? 

• Imagine Our Data Generating Function is Poisson 
• We Only Have Imperfect Variables to Use 

– We Have This Situation 

• Depending Which Variables We use 
– Over/Under-Dispersal Changes 
– Different Shape Parameter values for Negative 

Binomial 
– Shape Affects Deviance and Likelihood 
– Adding Variables Causes Deviance to Increase 

• Nested Models are Not Nested Any More! 
• AIC, BIC  - all increase as well 
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Standard Errors 

• Standard Errors Reflect 

– Distribution of Predictor Variables - YES 

– Variance of the Dependent Variable – NO 

– Only Depend on X and W 

• Assume that 

– Model Structure is Ideal 

– Transformed Errors are Normally Distributed 

– And So Do P Values 
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Ensembles of GLMs 

• 100 Iteration GLMs on Bootstrap Samples 
– Tweedie Example 
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Conclusion 

• Systematic/random conjecture 
– Doesn’t look very real 

• Systematic polluted by randomness 

– Model statistics are of very limited help 
– Statistical inference - uncertain! 

• Linearity 
– The irrelevant influences all the model 

• Negative Binomial  Problem 
– Nested models exhibit increasing deviance 

• Standard Errors 
– Not so good news 
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