CAS RPM 2014 Washington DC | PM-14

Introduction to Nonparametric Regression UBI Analytics for Mileage & Daytime Discounts™

Ryan N. Morrison

Founder & CEO | True Mileage, Inc.

Daniel Hernandez-Stumpfhauser PhD

Lead Statistician | True Mileage, Inc.

Agenda

- 1) About us
- 2) Intro to Nonparametric Regression

- 3) Mileage Discount Analytics TM
- 4) Daytime Discount Analytics TM

Are male or female drivers safer?

This nonparametric surface will answer that question today!

UBI Issues

Technology

Devices and data transfer.

- -Telecomm Fees
- -Privacy Issues
- -6 Months, 30%

Analytics

How big should discounts be?

- -Historic Data
- -Rating Plan Associations
- -Time to Implement

Solution

Technology

Devices and data transfer.

- -Devices 25% less
- -Transfer 100% less
- -Privacy Sensitive
- -Discounts 50-60%

Analytics

How big should discounts be?

- -National Database
- -Accounts for Rating Plan
- -Ready Immediately

Agenda

1) About us

2) Intro to Nonparametric Regression

3) Mileage Discount Analytics TM

4) Daytime Discount Analytics TM

Linear Regression

Polynomial Regression

$$E[y] = \sin(4x)$$

Linear Regression

Polynomial Regression

Goals

- Given a scatterplot;
- We want to find a function $f(\mathbf{x})$ that best predicts the dependent variable y

- Estimate smooth regression function f(X) at each target point X_0
- Use only those observations close to the target point \boldsymbol{X}_0
- Smooth localization is achieved using a kernel $K_{\lambda}(X_0, X_i)$
- The *width* of the neighborhood λ controls the smoothness, bias and variance.

Nadaraya-Watson kernel-weighted average

$$\hat{f}(x_0) = \sum_{i=1}^n \left(\frac{K_{\lambda}(x_0, x_i)}{\sum_{i=1}^n K_{\lambda}(x_0, x_i)} \right) y_i$$

• The Gaussian density function is a popular choice of kernel

$$K_{\lambda}(x_0, x) = \phi\left(\frac{x - x_0}{\lambda}\right)$$

- Kernel local regression generalizes naturally to higher dimensions.
- Let b(X) be a vector of polynomial terms in X e.g. $b(X) = (1, X_1, X_2, X_1^2, X_2^2, X_1 X_2)$
- Let $K_{\lambda}(x_0, x_i)$ be a 2-dimensional kernel. At each $x_0 \in \Re^2$ minimize,

$$\sum_{i=1}^{n} K_{\lambda}(x_{0}, x_{i}) \left[y_{i} - b(x_{i})^{T} \beta(x_{0}) \right]^{2}$$

Agenda

- 1) About us
- 2) Intro to Nonparametric Regression
- 3) Mileage Discount Analytics TM
- 4) Daytime Discount Analytics TM

Example 1:

Mileage	Discount	
500	45%	
3,500	26%	
6,000	19%	
8,500	16%	
11,000	11%	
13,000	7%	
16,000+	1%	

Example 2:

Mileage Up To	Discount		
2,500	54%		
5,000	39%		
7,500	34%		
10,000	26%		
12,500	18%		
15,000	13%		
15,000 +	7%		

Rating variable with the strongest mileage relationship?

- Driver Age
- Urban vs. Rural
- Vehicle Type

- Driver Gender
- Drivers/Vehicles
- Vehicle Age

Rating variable with the strongest mileage relationship?

- Driver Age
- Urban vs. Rural
- Vehicle Type

- Driver Gender
- Drivers/Vehicles
- Vehicle Age

Driver Age : 48 yr ~ 13,000

- $18 \text{ yr} \sim 11,000$
- 70 yr ~ 9,000

$Vehicle\ Age\ \ \ \dot{\stackrel{New}{\cdot}}\ ^{\sim 14,000}_{\sim 8,000}$

Driver Age • 48 yr ~ 13,000

- $18 \text{ yr} \sim 11,000$
- $70 \text{ yr} \sim 9,000$

Vehicle Age : New ~ 14,000 old ~ 8,000

Should a 10,000 mile vehicle get a discount?

Should a 10,000 mile vehicle get a discount?

 $Driver Age \underbrace{ \begin{array}{c} 48 \text{ yr} \sim 13,000 \\ 70 \text{ yr} \sim 9,000 \end{array} }$

- $18 \text{ yr} \sim 11,000$

Vehicle Age Old ~ 14,000

Not always! It would be a double discount for older drivers and vehicles.

How do we resolve the double discounting issue?

Rating Mileage: The mileage a vehicle is effectively being charged for in an existing rating plan.

- Discount vehicles only if below their rating mileage

Rating Mileage = function(Vehicle Age, Driver Age)

Rating Mileage Model

- 1) Data: Unbiased national data set with hundreds of thousands of mileage observations.
- 2) Variables: The most predictive rating variables are driver age and vehicle age.

3) Goal: Estimate rating mileage, the mileage a vehicle is effectively charged for through a typical rating plan.

Rating Mileage Model

• We model annual mileage averages y_i as

$$E[y_i] = f(x_{1i}, x_{2i})$$

where (x_{1i}, x_{2i}) is driver age and vehicle age, respectively.

• We model y_i as having variance equal to σ^2 / n_i

Rating Mileage Data

Driver Vehicle	15	16	• • •	84
1	10,598	12,771	•••	8,786
2	14,335	12,385	•••	8,633
• • •	• • •	• • •	• • •	• • •
2 4	8,513	8,882	• • •	6,703

Rating Mileage Model

• At each point $\mathbf{x}_0 = (x_{1,0}, x_{2,0})$ we estimate $f(x_{1,0}, x_{2,0})$ via kernel methods

$$\hat{f}(x_{1,0}, x_{2,0}) = b(x_{1,0}, x_{2,0})^T \hat{\beta}_0$$

where $b(x_{1,0}, x_{2,0})^T = (1, x_{1,0}, x_{2,0}, x_{1,0}^2, x_{2,0}^2, x_{1,0}x_{2,0})$ and $\hat{\beta}_0$ minimizes

$$\sum_{i=1}^{n} K_{\lambda}(\mathbf{x}_0, \mathbf{x}_i) n_i \left[y_i - b(x_{1i}, x_{2i})^T \beta_0 \right]^2$$

Rating Mileage Model

Rating Mileage Model

Rating Mileage Model

Results: 3D

Rating Mileage Model

Results: 2D

Mileage Discount Analytics TM

To eliminate double discounts use:

$$Max \ Discount \cdot \left(1 - \frac{Mileage}{Rating \ Mileage}\right)$$

Example 1:

(new car and mid-age driver)

$$50\% \cdot \left(1 - \frac{10,000}{16,000}\right) = 19\%$$

Example 2:

(older car or older driver)

$$50\% \cdot \left(1 - \frac{10,000}{10,000}\right) = 0\%$$

Mileage Discount Analytics TM

Agenda

- 1) About us
- 2) Intro to Nonparametric Regression

- 3) Mileage Discount Analytics TM
- 4) Daytime Discount Analytics TM

- 1) Data: Unbiased national data set with hundreds of thousands of mileage observations and accidents.
- 2) Variables: Predictive rating variables used are driver age, driver gender, and hour.

3) Goal: Estimate the typical and actual risk for every combination of driver age, gender, and hour.

• The average loss for a general cell is y_i

$$E[y_i] = \exp\{m(x_{1i}, x_{2i})\}$$

- $m(x_{1i}, x_{2i})$ is an unknown function of interest of the predictor variables; driver's age and hour.
- We transform time of day to $cos(x_2)$ and $sin(x_2)$.
- Models run separately for males and females.

• We include first order and second order terms, $m(x_{10}, x_{20}) = b(x_{10}, \cos(x_{20}), \sin(x_{20}))^T \beta(x_{10}, x_{20})$

- Local likelihood approach,
- We multiply kernel by sample size weights n_i to account for different sample sizes

Loss Models

Distribution Models

Risk Models

Females

Nonparametric Regression

Are male or female drivers safer?

Red = Females Safer | Blue = Males Safer

Thank you!

Ryan N. Morrison
Founder & CEO | True Mileage, Inc.

Daniel Hernandez-Stumpfhauser PhD Lead Statistician | True Mileage, Inc.

Visit True Mileage at Booth #5

