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Introduction to Nonparametric Regression

UBI Analytics for Mileage & Daytime Discounts..

Ryan N. Morrison
Founder & CEO | True Mileage, Inc.

Daniel Hernandez-Stumpthauser PhD
Lead Statistician | True Mileage, Inc.
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1) About us
2) Intro to Nonparametric Regression
3) Mileage Discount Analytics.

49) Daytime Discount Analytics.
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Nonparametric Regression

Are male or female drivers sater?

This nonparametric surface will answer that question today!
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Technology

Devices and data transfer.

-Telecomm Fees
-Privacy Issues
-6 Months, 30%
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Analytics

How big should discounts be?

D

-Historic Data
-Rating Plan Associations
-Time to Implement



Technology

Devices and data transfer.

-Devices 25% less
~Transter 100% less

-Privacy Sensitive
-Discounts 50-60%
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Analytics

How big should discounts be?
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Age of Vericle

-National Database
-Accounts for Rating Plan

-Ready Immediately



Summary

30 Days
Value Score

Mileage 500 * * * i
Hard Brakes 4 *' * * * ‘i

Late Night 25% ‘i

MPG 25 ‘*’ ‘*’f
Rush Hour 35% * i

Error Codes P0420, P0409

Transfer 12/18/2018

Install 1/1/2012

VIN T456RF 345467

Recent Trips Trip1 Trip2 Trip 3
Date 12/20 12/20 12/19
Start 11:15p 10:56a  3:45p
Minutes 29 5 17
Miles 15 2 9
Hard Brakes 1 0 1

?@ Cost $5.23 $0.89 $3.45
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H Agenda

1) About us
2) Intro to Nonparametric Regression
3) Mileage Discount Analytics.

49) Daytime Discount Analytics.
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Polynomial Regression

S E[yl=p,+p,x +/32x2 -
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Linear Regression
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Polynomial Regression
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Nonparametric Regression

Goals

* Given a scatterplot;

e We want to find a function f (X) that best
predicts the dependent variable Y
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Nonparametric Regression

* Estimate smooth regression function f (X )
at each target point X,

* Use only those observations close to the
target point X,

* Smooth localization 1s achieved using a
kernel Ka(Xo»Xi)

* The width of the neighborhood A

controls the smoothness, bias and variance.
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Nonparametric Regression

° local average
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Nonparametric Regression

* Nadaraya-Watson kernel-weighted average
( \

)= 3| et
= EKA ('XO"xi)
\ i=I /

* The Gaussian density function 1s a popular choice

Kﬂ(xo,x)=¢(x"x°)

ot kernel

A
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Nonparametric Regression

* Kernel local regression generalizes naturally to
higher dimensions.

* Let b(X ) be a vector of polynomial terms in X

o5 b(x)=(1 X, X, X, X2, X, X,)

e Let K (xo, ) be a 2-dimensional kernel.
At each xOEmz minimize,

$ K -6 )]
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Agenda
1) About us
2) Intro to Nonparametric Regression

3) Mileage Discount Analytics.

49) Daytime Discount Analytics.
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Mileage Discount Analytics ..

Example 1:

500 45%

3,500 26%

6,000 19%

8,500 16%

11,000 %
13,000 7%
16,000+ 1%
JRYE s




Mileage Discount Analytics..

Example 2:
2,500 54%
5,000 39%
7,500 34%
10,000 _ 26% >
12,500 18%
15,000 13%
15,000 + 7%

23
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Mileage Discount Analytics

Rating variable with the strongest mileage relationship?

- Driver Age - Driver Gender
- Urban vs. Rural - Drivers/Vehicles
- Vehicle Type - Vehicle Age

9ot Ug/»
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Mileage Discount Analytics

Rating variable with the strongest mileage relationship?

- Driver Age - Driver Gender
- Urban vs. Rural - Drivers/Vehicles
- Vehicle Type - Vehicle Age
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Mileae iont nlticsM

Driver Age -

* 18 yr ~ 11,000
48 yr ~ 13,000
70 yr ~ 9,000

Vehicle Age

* New ~ 14,000
* Old ~ 8,000
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Mileage Discount Analytics

Driver Age -

* 18 yr ~ 11,000
48 yr ~ 13,000
70 yr ~ 9,000

Vehicle Age

* New ~ 14,000
* Old ~ 8,000

Should a 10,000 mile vehicle get a discount?
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Mileage Discount Analytics

Should a 10,000 mile vehicle get a discount?

. * 18 yr ~ 11,000
Driver Age e
Vehicle Age

Not always! It would be a double discount for
older drivers and vehicles.
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Mileage Discount Analytics

How do we resolve the double discounting 1ssue?

Rating Mileage: The mileage a vehicle 1s effectively being
charged for 1n an existing rating plan.

- Discount vehicles only if below their rating mileage

Rating Mileage = function(Vehicle Age, Driver Age )
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Rating Milege Model

1) Data: Unbiased national data set with hundreds of
thousands of mileage observations.

2) Variables: The most predictive rating variables are
driver age and vehicle age.

3) Goal: Estimate rating mileage, the mileage a vehicle
1s effectively charged for through a typical rating plan.
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Rating Mileage Model

* We model annual mileage averages y. as
E[yi] = f(xli’XZi)

where (x1i9x2i) 1s driver age and vehicle age,
respectively.

* We model y; as having variance equal to o / n,

/
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Rating Mileage Data

Driver 15 16 84
Vehicle ©te
1 10,598 | 12,771 8,786
2 14,335 | 12,385 8,633
24 8,513 8,882 6,708
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ating Mileage Model

* At each point x, = (xl 05X, 0) we estimate f (xl,o,xz’o)
via kernel methods

N

f(xloaxzo) (xloaxzo)rﬁo

h b( )T ~1 2 2
W el"e,\ X1,00%2,0) = X1 05X 05 %105 %205 X1,0%2,0
and [3’0 minimizes

2]{ X,, X (xlz?x2l) /30]2
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Rating Mileage Model
10 > (xoﬂf(xO))

data 0 ‘
Nt

1.5e+004
Mileage
Te+004
kernel
5000
0
16
18 .
? . 50 Vehicle Age
R Driver Age 34
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atin Mileage Mod;z
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Results: 3D
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Rating Mileage Model
Results: 2D
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Mileage Discount Analytics

To eliminate double discounts use:

Max Di ; (1 Mileage )
e Rating Mileage
Example 1: 00/ - (1 B 10,000) _ 190
(new car and mid-age driver) % 16, 000 /0
Example 2: o (1 B 10,000) o
(older car or older driver) 50% 10, 000 0%
RUE )
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Mileage Discount Analytics

8,000

Rating Mileage
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D Rating Mileage
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U Vehicle Age

M1 LEAGE 40

State adjustments to the national rating mileage table also recommended and available.



Agenda

1) About us
2) Intro to Nonparametric Regression
3) Mileage Discount Analytics.

4) Daytime Discount Analytics..
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Daytime Discount Analytics.

1) Data: Unbiased national data set with hundreds of
thousands of mileage observations and accidents.

2) Variables: Predictive rating variables used are driver
age, driver gender, and hour.

3) Goal: Estimate the typical and actual risk for every
combination of driver age, gender, and hour.
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Daytime Discount Analytics.
* The average loss for a general cell 1s y.

E[)’i] = eXp{m('xli9x2i)}

m(xh.,le.) 1s an unknown function ot interest of
the predictor variables; driver’s age and hour.

* We transform time of day to Cos(xz) and Sin(x2 )

* Models run separately for males and females.
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Daytime Discount Analytics.

* We include first order and second order terms,

m(xlo > X0 ) = b(xlo ; Cos(xzo )a si11(x20 ))T ﬂ(xlo » X0 )

* Local likelihood approach,

* We multiply kernel by sample size weights 7z,
to account for different sample sizes
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Daytime Discount Analytics.

LLoss Models
Males Females
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Daytime Discount Analytics.
Distribution Models
Males Females
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Daytime Discount Analytics.
Risk Models
5NIales Females
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Nonparametric Regression

Young Early

Are male or female drivers sater?
Red = Females Safer | Blue = Males Safer
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Thank you!

Ryan N. Morrison
Founder & CEO | True Mileage, Inc.

Daniel Hernandez-Stumpthauser PhD
Lead Statistician | True Mileage, Inc.

Visit True Mileage at Booth #5
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