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Outline

Smoothing methods allow the creation of extremely
predictive data out of signal that would otherwise
be hidden in the noise.

1. Hierarchical Credibllity
2. Mathematical Approaches
3. Spatial smoothing approaches

Methods:
Noisy & Accurate ‘ Accurate & Precise
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Accuracy vs Precision

Perfect Accuracy Biased but Precise

Goal: Accurate and Precise!
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Hierarchical Credibility Theory

-Practical way to improve data
-Works with any hierarchy
-Great performance
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1. Credibllity

Simplistic view of Credibility:
 Employs some independence assumption
« Uses a simple hierarchy:

W Large “Credible” sample

|
¥8%  Similar “non-Credible” sample

The strength of credibllity is in its practicality:
reducing variance of estimates.
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1. Miscellaneous Rant

Theorem: (“Central Lie of Mathematics”).

If {Xj} Is a sequence of I.I.d. random
variables,

and if E[Xj] = mu < oo,
and If 0< Var[Xj] = "2 < oo,

Then limvn Y™, 1)

Nn—o0oo n

> N(0,0)

Observation: Independence is not in general true.
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1. Hierachical (Credibility) Smoothing
Question why stop at 2 levels:

Multi level

Hierarchy Census: Postal:
State State
%{&% COlety COlety

| Tl’la.Ct County| & Zip3
X Blocklgroup COUﬂtyl& Zip 5

Smoothed data is precision and accurate

Alternate structures: adjacency, similarity, clustering
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1. General, n-level hierarchy

Theorem: (Buhlman, Gisler)

Hypotheses (short version): i.i.d. at second highest
level, conditionally independent given same leaf.

Credibility Estimate:

Multi level Cond. Mean (see text for details)
Hierarchy Variance
n/a
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1. A Noisy Accurate Data Element

Consider by peril, regional loss statistics

Claim Counts

e Frequency =
q Y Earned Exposure

Loss Amounts

e Severity =
Y Claim Counts

Loss Paid

e Loss Cost = :
Claim Counts

Statistics are easy to compute, and accurate.
At the finer levels they are too noisy to be useful.
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1. Credibility Smoothing Results

Weighted estimates are stable and accurate
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Wind Claim Frequency Smoothed Retro Wind Claim Frequency

Precision gained by weighting with similar data.
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Mathematical Smoothing Technigues

-Identify similarity
-Smooth IDW Average
-Creates new data
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2. Metrics ldentify Where to Weight

Metrics quantify similarity/distance between
objects.

Lots of types of metrics:

« “"Euclidean” Distance

« Distance between houses using characteristics
« Distance between areas using statistics
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2. How to Creating Metrics

Creation of a metric/component metric

« Transform to segment
— e.g. Year built is great at segmenting post 1960
— Distance YB between 2 prop.= | A Rescaled Year Built |

* Rescale/ data to be comparable

Combine component metrics using LP metrics

e H.Distance = \/Z ¢; * Distance for Characteristic j?

Optimize ¢; and transformation based on needs.
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2. IDW averages

IDW averaging smooths data by putting the most
weight on the most similar data

2 WixX;
2 Wi

e IDW Avg of X for Obs j =

1
Distance from obs.j to obs i

[ Wi,j —

Uses: Weather data, Property Characteristics, high
dimensional metric space.
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2. Example-ldentifying Comps

Goal: provide a default value for missing data

Adaptive Distance: Measures similarity of two properties using:
- “Distance” between two properties based on 10 characteristics
3 Uses the data that is present

Next Best
Property Best Match Match
65,800 NA
Value
1 1
Baths
NA 1124
Area
1 1
Story
Carport Carport
Garage
0.6 0.6
A.D
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2. IDW Averaging Results
Imputation: Accurate Default Values

« Results are accurate and precise
« QOutliers are slightly biased towards the mean

140
120
104
80
Imputed Actual

G0
Age — Predicted

40
20

0
0-5 515 1525 25-35 3545 45-H5 H5-65 657> 7585 8585 95105 105+

Actual Age (Grouped)
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Spatial Smoothing Approaches

-Point =>» Region = Observations
-Kernel and Kriging Methods
-Results
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3. Point data

“'-; PRELIMINARY SEVERE WEATHER Wind Reports
| REPORT DATABASE (ROUGH LOG) January 01, 2012 - December 31, 2012

e NDAASStorm Prediction Center  Morman, Oklahoma Updated: Sunday Januarny 05, 2013 0210 CT

Source: NOAA Storm Prediction Center; http://www.spc.noaa.gov/climo/online/monthly/2012 annual summary.html#
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3. Kernel Smoothing

Point data Is assigned to regions using Kernel
smoothing

Hail Risk at x = 2 Ky(x,y)
v}
Where f(x) = K;(x,y) Is the pdf at x for a Random
variable, e.g. Uniform, with y=y and o = A.

Even simpler interpretation: Number of Storm events In
X —miles in the past Y years

Issues: observational bias, boundary effect, choice of A
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3. Kernel Smoothing Results
U.S. Sample
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Renormalized log transformed Kernel Smoothed Hail probability
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3. Kriging

Observation: Adjacent points have correlated
geographic data.

Kriging:
* Assumes a Gaussian field:
— Each position associated with random variable

— Spatial correlation
— Either interpolation or statistical fit

« Smoothed average of nearby points.
* Produces “similar’ results to kernel approaches
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3. Map-Wind Storm Pro
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3. Kriging Results
U.S. Sample
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Renormalized Log of LaFge Hail Storm Prob.
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Average Wind Paid Loss

3. Good Data gives good models:

Houses

 in areas with many historic Wind & Hail Storms/Claim activity
» That have risky property characteristics

Tend to have high hail losses.
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Conclusions

Smoothing methods create good data out of
accurate garbage.

Consider smoothing methods whenever:
« Data Is very predictive but very noisy

« Data Is associated with a different class of objects
« Data Is missing
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Thank you

Scott Zrebiec, Ph.D.
Manager Statistical Modeling
LexisNexis Risk Solutions
scott.zrebiec@lexisnexis.com
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