
Actionable predictive learning for
insurance profit maximization

Leo Guelman1,2 and Montserrat Guillén2

1Royal Bank of Canada - RBC Insurance
2Riskcenter, University of Barcelona

CAS RPM Seminar
Washington, D.C.

March, 2014

1 / 34



Antitrust Notice

The Casualty Actuarial Society is committed to adhering
strictly to the letter and spirit of the antitrust laws. Seminars
conducted under the auspices of the CAS are designed solely
to provide a forum for the expression of various points of view
on topics described in the programs or agendas for such
meetings.

Under no circumstances shall CAS seminars be used as a
means for competing companies or firms to reach any
understanding expressed or implied that restricts competition
or in any way impairs the ability of members to exercise
independent business judgment regarding matters affecting
competition.

It is the responsibility of all seminar participants to be aware
of antitrust regulations, to prevent any written or verbal
discussions that appear to violate these laws, and to adhere in
every respect to the CAS antitrust compliance policy.
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Motivation

Predictive Modeling is a core strategic capability of many
top insurers (widely applied in marketing, underwriting, pricing,
claims management, fraud detection, etc.)

Common goal of models: to predict a response variable
using a collection of observable attributes (e.g., Age, Yrs.
Licensed, Gender, Territory, Claims and Conviction History, etc.)

Tons of literature on the above, but less attention has been paid to:

In many important settings, the values of certain attributes
can be proactively chosen at the discretion of a decision
maker – called actionable attributes or “treatments”. For
instance, we can choose:

Which policyholders should be contacted to prevent them from
switching to an alternative insurer?
Which Auto insurance clients should be offered a Life policy?
By how much should we change the rates at policy renewal?
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Motivation

The values chosen for the actionable attributes have
important implications for the ultimate profitability of the
insurance company

There is no “global” better action ⇒ Relevant in the context
of treatment heterogeneity effects

The objective is NOT to predict a response variable with high
accuracy (as in predictive modeling), but to select the
optimal action or treatment for each client

Optimal personalized treatment ⇒ the one that maximizes
the probability of a desirable outcome (e.g., Profits)

Not addressed by traditional predictive modeling techniques
(GLMs, CART, SVM, Neural Nets, etc.).
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A toy example: The red/blue envelope problem

Consider a Client Retention Program aimed to increase the
overall retention rate of an insurance portfolio
Treatment consists in a promotion sent either in a red or blue
envelope

Table: Treatment impact on the client’s renewal outcome

Client Type Red envelope Blue envelope

A NOT renew NOT renew
B Renew Renew
C NOT renew Renew
D Renew NOT Renew

Clients ‘A’ and ‘B’ are indifferent to the color of the envelope

The optimal personalized treatment is to send a Blue envelope to
‘C’ clients and a Red envelope to ‘D’ clients
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Literature

Literature is relatively scarce and mostly published recently

Personalized Medicine: (Qian and Murphy, 2011; Zhao et
al., 2012; Su et al., 2009)

Marketing: (Jaskowski and Jaroszewicz, 2012; Radcliffe and
Surry, 2011; Lo, 2002)

Economics: Imai and Ratkovic (2013)

Insurance: Personalized treatments in the context of Pricing,
Client Retention and Cross-Selling

Guelman, L. and Guillén, M. (2014). “A causal inference approach
to measure price elasticity in automobile insurance”.
Expert Systems with Applications 41: 387–396.
Guelman, L., et al. (2013). “Uplift random forests”. Cybernetics &
Systems, forthcoming.
Guelman, L., et al. (2013). “Optimal personalized treatment rules
for marketing interventions: A review of methods, a new proposal,
and an insurance case study.” Submitted.
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The fundamental problem of personalized treatment models

The problem of selecting the optimal treatment is non-trivial...

The outcome of interest – i.e., the optimal treatment – is
unknown on a given training data set

Each client can only be exposed to one treatment
condition ⇒ we can only observe the response under the
exposed condition.
The counterfactual response is never observed ⇒ the “true”
optimal treatment is not observed (Holland, 1986)

A key distinction for building personalized treatment learning
models is between randomized experiments and
observational data.
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Let’s formalize the problem

For now assume a controlled randomized experiment – i.e.,
clients are randomly assigned to two treatments, denoted
by A ∈ {0, 1}

Let Y (a) ∈ {0, 1} denote a binary potential response of a
client if assigned to treatment A = a, a = {0, 1}

The observed response is Y = AY (1) + (1− A)Y (0)

Clients are characterized by a p-dimensional vector of baseline
predictors X = (X1, . . . ,Xp)>

Data consists of L i.i.d. realizations of
(Y ,A,X), {(Y`,A`,X`), ` = 1, . . . , L}.
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Let’s formalize the problem

At the most granular level, the personalized treatment effect
is a comparison between Y (1) and Y (0) on the same client.
Usually,

Y`(1)− Y`(0) ∀ ` = {1, . . . , L}

But as discussed above, this is an unobserved quantity

In practice, the best we can do is to estimate the personalized
treatment effect by conditioning on clients with profile X = x

Thus, we define the personalized treatment effect (PTE) by

τ(x) = E [Y`(1)− Y`(0)|X` = x]

= E [Y`|X` = x,A` = 1]− E [Y`|X` = x,A` = 0].
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The two-model approach to PTE estimation

1 Estimate E [Y |X,A = 1] using the treated clients only

2 Estimate E [Y |X,A = 0] using the control clients only

3 An estimate of the PTE for a client with predictors X` = x is

τ̂(x) = (Ŷ`|X = x`,A` = 1)− (Ŷ`|X = x`,A` = 0).

Pros:

Any conventional statistical or algorithmic binary classification
method may serve to fit the models.

Cons:

Models developed to predict the wrong target!

The method emphasize the prediction accuracy on the
response, not the accuracy in estimating the change in the
response caused by the treatment
Relevant predictors for Y are usually different from relevant
PTE predictors

10 / 34



Causal Conditional Inference Tree

Y(Ctrl) = 10%
Y(Treat) = 8%

PTE = 2%
L =30,000

PTE = 4.2%
L =15,554

PTE = 1.3%
L =14,446

X3 <= 29 X3 > 29

PTE = 6.0%
L =3,889

PTE = 3.8%
L =11,665

PTE = 4.5%
L =4,355

PTE =3.1%
L =7,310

PTE = 2.3%
L =6,585

PTE = 0.6%
L =7,861

PTE = 1.1%
L =2,444

PTE = 0.2%
L =5,417

X5 <= 11 X5 > 11 X2 <= 30 X2 > 30

X1 => 56 X1 < 56X2 <=35 X2 > 35

Y(Treat) = Attrition rate on treated clients
Y(Ctrl) = Attrition rate on control clients
PTE = Personalized treatment effect: Y(Ctrl) - Y(Treat)
L = Number of clients
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Causal Conditional Inference Tree - Pseudocode

Algorithm 1 Causal conditional inference tree

1: for each terminal node do
2: Test the global null hypothesis H0 of no interaction effect between

the treatment A and any of the p predictors at a level of significance
α based on a permutation test (Strasser and Weber, 1999)

3: if the null hypothesis H0 cannot be rejected then
4: Stop
5: else
6: Select the j∗th predictor Xj∗ with the strongest interaction effect

(i.e., the one with the smallest adjusted P value)
7: Choose a partition Ω∗ of the covariate Xj∗ in two disjoint sets

M⊂ Xj∗ and Xj∗ \ M based on the G 2(Ω) split criterion
8: end if
9: end for

G 2(Ω) =
(L− 4){

Left Node︷ ︸︸ ︷
(ȲnL(1)− ȲnL(0))−

Right Node︷ ︸︸ ︷
(ȲnR (1)− ȲnR (0))}2

σ̂2{1/LnL(1) + 1/LnL(0) + 1/LnR (1) + 1/LnR (0)}
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R implementation: The uplift package in CRAN

The highlights:

Implements various functions for training personalized
treatment learning models (a.k.a., uplift)

Currently 5 estimation methods are implemented

Causal conditional inference forests (ccif)
Uplift random forests (upliftRF)
Modified covariate method (tian_transf)
Modified outcome method (rvtu)
Uplift k-nearest neighbor (upliftKNN)

Exploratory Data Analysis (EDA) tools designed for PTE
models

Functions for evaluating performance of PTE models

Profiling results of PTE models

PTE Monte Carlo simuations

Package in continuous development
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A cross-sell example: Auto ⇒ Property Insurance

A randomized experiment with a cross-sell binary “treatment”

Table: Cross-sell rates by group

Treatment Control

Purchased Home policy = N 30,184 3,322
Purchased Home policy = Y 789 75
Cross-sell rate 2.55% 2.21%

The average treatment effect is 0.34% (2.55% - 2.21%),
which is not statistically significant (P value = 0.23)

Can we identify a subgroup of clients for which the treatment
was effective? If so, target those clients in the future.
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A cross-sell example: Auto ⇒ Property
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Ratemaking and personalized treatment learning

Consider the existing portfolio of an insurer where the
premium P`t charged to policyholder ` = {1, . . . , L} in year t
is given by

P`t = L̂C `t + E`t + A`t

where

L̂C `t = Expected loss cost
E`t = Expenses
A`t = Profit loading

Loss cost estimation has seen an enormous advance with
predictive modeling

Profits have remained obscure and rather forgotten.
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Ratemaking and personalized treatment learning

We can think of A` as an actionable attribute or “treatment”
which can take values on a continuous scale

The problem is to select the optimal personalized
treatment: the one that maximizes the overall profitability of
the insurance portfolio (

∑L
`=1 P`t − L̂C `t − E`t)

Assuming L̂C ` and E` are exogenous, then selecting the
optimal A` ⇒ selecting the optimal P`

The impact of a change in P` on the overall profitability of
the portfolio is a-priori uncertain as a big enough P` will make
a policyholder more likely to switch to an alternative insurer

This requires understanding the precise impact of a change in
P` on the probability of renewal for each policyholder ` – i.e.,
the price elasticity
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Price Elasticity as a missing data problem

Price elasticity involves a comparison of the potential renewal
outcomes for alternative rate changes (the “treatments”)
defined on the same policyholder

Due to the fundamental problem of personalized
treatment learning models ⇒ each policyholder can only be
exposed to one rate change value, so only one of the potential
renewal outcomes is an observed outcome. The counterfactual
outcomes are never observed.

One way to think about the counterfactual outcomes is
that their values are “missing” and therefore they should be
multiply inputed to represent their uncertainty.

18 / 34



Price Elasticity as a missing data problem

To simplify, let’s bin the rate change into five ordered values
A = {1 < . . . < 5} and assume a 1-year horizon

The entries r`a below denote the observed renewal outcome ∈ {0, 1}
of policyholder ` = {1, . . . , L} when exposed to rate change level
A = a; a = {1 < . . . < 5}
Dots indicate counterfactual outcomes, which are missing

The price elasticity estimation problem ≡ the problem of filling in
the missing values in the client-by-rate change table with reliable
estimates.

Table: Client-by-Rate change table

Rate Change Level
Client Level 1 Level 2 Level 3 Level 4 Level 5
1 . r12 . . .
2 . . r23 . .
3 r31 . . . .
4 . . . r44 .
5 . r52 . . .
6 . . . . r65
. . . . . . . . . . . . . . . . . .
L . . . . rL5
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A key additional complexity

Reliable estimates of effects attributable to treatments
require experimental data (i.e., coming from randomized
experiments)

This means that for reliable price elasticity estimation, data
must come from a randomized assignment of policyholders to
rate change levels

This condition rarely holds in practice: rate changes are
mostly derived from a pricing modeling exercise ⇒ rate
change is a deterministic function of the policyholder’s
observed risk characteristics

Thus, we end up with observational data – i.e., not derived
from experimentation

Policyholders exposed to different rate change levels are
not directly comparable.
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But...what is the problem?

The standard approach: model the policyholder’s lapse outcome
as a function of the rate change and the policyholder’s covariates

The key assumption: the inclusion of those covariates adjust for
the exposure correlations between price elasticity and other
explanatory variables

Problem: non-overlapping supports of X between policyholders
exposed to different rate change levels

As an extreme example: Assume policyholder’s Age is associated
with the lapse outcome

Age
Rate Change
5% 10%

< 25 yrs. X X
≥ 25 yrs. X NA

“X” indicates whether historical data is available
Clients ≥ 25 yrs. exposed to a 5% rate change don’t have a
good comparison in the 10% rate change group
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But...what is the problem?

Regression analysis masks this fact and assumes that the
estimated price elasticity model is good for all policyholders
(even for those never observed under a specific rate change)

In real data sets, extreme examples such as the above are
rare, but non-overlap situations are common

Non-overlap refers to the extent to which the distribution of
the key renewal/lapse predictors differ across policyholders
historically exposed to different rate change levels

The problem is even worse with a large number of
predictors, as groups may differ in a multivariate direction
and so non-overlap problems are more difficult to detect
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Propensity scores and Matching algorithms

Some good news...

Under certain data conditions (Rosenbaum and Rubin, 1983):

We can construct a randomized-type of experiment from
observational data ⇒ helpful for determining price elasticity
at the portfolio level

It’s possible to infer the “missing” counterfactual renewal
outcomes (and thus fill-in the missing values in the
client-by-rate change table) ⇒ helpful for determining price
elasticity at the individual policyholder level

The key concepts are propensity scores (Rosenbaum and
Rubin, 1983) and matching algorithms (Gu and Rosenbaum,
1993)
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Matching: conceptual framework

Let’s say in the training data we have 2 policyholders which are very
similar in terms of their relevant lapse predictors X – i.e., about the
same age, driving record, living in the same neighbourhood, etc.

But, they have been exposed to different rate change levels – e.g.,
5% and 10% (enough historical data may allow us to find such pair)

Policyholder 1
Rate Change = 5%

Policyholder 2
Rate Change = 10%

Matched 
policyholders

Renewal Outcome at 
5% rate increase

Renewal Outcome 
at 10% rate increase

Renew ?

NOT Renew?

The observed outcomes are 
used to fill-in the 

counterfactual outcomes
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Matching algorithms

Matching algorithms have many variants. There are 3 key choices:

1 The definition of distance between two policyholders in
terms of their characteristics

2 The choice of the algorithm used to form the matched pairs
and make the distance small (greedy vs. optimal matching)

3 The structure of the match (i.e., the number of treated and
control subjects that should be included in each match set)

In Guelman and Guillén (2014), we used optimal pair matching
⇒ equivalent to finding a flow of minimum cost in a certain
network (a standard combinatorial optimization problem)
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Propensity scores

Even with a moderate number of predictors, exact matches on
X are not feasible ⇒ propensity scores come into play

Given a binary treatment A ∈ {0, 1}, the propensity score is
the conditional probability of assignment to treatment 1 given
X,

π(X`) = P(A` = 1|X`)

In a randomized experiment, π(X`) = 1/2 ∀ X`

In an observational study, the propensity score can be
estimated (e.g., logistic regression)

With more than two treatments, we could (i) consider all
possible treatment dichotomies or (ii) build a multinomial
response model.
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Propensity scores - Balancing Property

An important property of the propensity score allows us to
match only on the propensity score

The Balancing Property: Treatment A and the observed
covariates X are conditionally independent given the
propensity score π(X),

A ⊥ X|π(X)

i.e., conditional on the propensity score π(X), the distribution
of X is similar for A=1 and A=0.
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Propensity score for 20% vs. 5% rate change dichotomy
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Filling the Client-by-Rate change table

1 Replace the actual renewal outcomes with probability
estimates

Rate Change Level
Client Level 1 Level 2 Level 3 Level 4 Level 5
1 . r̂12 . . .
2 . . r̂23 . .
3 r̂31 . . . .
. . . . . . . . . . . . . . . . . .
L . . . . r̂L5

2 Infer the counterfactual renewal outcomes from the matched
pairs (as far as the overlap situation permits)

Rate Change Level
Client Level 1 Level 2 Level 3 Level 4 Level 5
1 r̂11 r̂12 r̂13 r̂14 r̂15
2 r̂21 r̂22 r̂23 r̂24 .
3 r̂31 . . . .
. . . . . . . . . . . . . . . . . .
L r̂L1 r̂L2 r̂L3 r̂L4 r̂L5
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Filling the Client-by-Rate change table

3 Develop a “global model” of the response.

Develop a global model ˆ̂r`t(x`), obtained by fitting the
estimates r̂`t of the observed responses, plus the estimates of a
subset of the counterfactual responses on the vector of
observed characteristics x` and rate change level
a = {1 < . . . < 5}
This model allows us to predict the renewal outcome for each
rate change A = a and value of X.

Table: Client-by-Rate change table filled with “global” renewal
probability estimates

Rate Change Level
Client Level 1 Level 2 Level 3 Level 4 Level 5

1 ˆ̂r11 ˆ̂r12 ˆ̂r13 ˆ̂r14 ˆ̂r15
2 ˆ̂r21 ˆ̂r22 ˆ̂r23 ˆ̂r24 ˆ̂r25
3 ˆ̂r31 ˆ̂r32 ˆ̂r33 ˆ̂r34 ˆ̂r35
. . . . . . . . . . . . . . . . . .

L ˆ̂rL1 ˆ̂rL2 ˆ̂rL3 ˆ̂rL4 ˆ̂rL5
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Economic price optimization

The proposed framework to fill-in the counterfactual renewal
outcomes with probability estimates allows us to more
efficiently solve the Economic Price Optimization
problem

The problem: which rate change should we expose each
policyholder to maximize the overall expected profit of the
portfolio subject to a fixed overall retention rate?

Recall that: An Optimal personalized treatment is the one
that maximizes the probability of a desirable outcome
(treatment ≡ rate change and the outcome ≡ profits)
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The optimization problem: An integer program

Maximize an expected profit function

Max
Z`a∀`∀a

∑
∀`

∑
∀a

Z`a

[
P`(1 + RCa)(1− L̂R`a)(1− ˆ̂r`a)

]

subject to a retention constraint

∑
∀a

Z`a = 1 ∀`

Z`a ∈ {0, 1}∑
∀`

∑
a

Z`a
ˆ̂r`a/L ≤ α. Current state

Efficient frontier
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Wrapping up

We introduced the concept of predictive learning with
actionable attributes (in the context of marketing and pricing
intervention activities)

The values chosen for these attributes have important
implications for the ultimate profitability of the insurer

Off-the-shelf predictive modeling algorithms can generally not
be used to tackle learning with actionable attributes

The nature of the data is key: experimental vs. observational
(experimental data is more common in marketing than in
pricing interventions)

Discussed methods and tools useful for each data context.
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Your turn...
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