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 

 Section 1: a least-squares based substitute for 
maximum likelihood, and extensions therein 
 

 Section 2: incorporation of covariate terms and real-
world case studies 

Agenda 



 
Ratemaking 
 A required consideration for rate adequacy concerns  

Reserving 
 May not share properties with remainder of runoff 

Reinsurance 
 General foundation of excess of loss treaties 

Risk management 
 Disproportionately volatile compared to remainder of book; can 

impact capital decisions and risk mitigation strategies 

 
 

Large losses matter 
Distributional analysis 



 
Risk loading 
 “Skip” problem by inserting a calculated load into applications 

where large loss analysis would be relevant 

 
 Extreme value theory 
 Fisher-Tippett-Gnedenko and Pickands-Balkema-de Haan 

 
General distribution fitting 

 Methods (moments, percentiles, least squares, maximum likelihood) 
 Distribution selection 
 

Approaches 
Distributional analysis 



 
 Losses are often not recorded on a ground-up basis 

(ie. total loss to insured)  
 

 Policy terms and conditions, including loss limits and 
deductibles, obscure the ground-up distribution of 
losses 
 

 “Undo”ing these conditions can be valuable in 
understanding loss patterns not directly observable 
 

 Regardless of data modifications, extremely unlikely 
to get tight fits 

 

 

Insurance complications 
Distributional analysis 



 
 Favorable properties 
 Convergent: solutions generally exist 
 Consistent: estimators converge to actual values as size 

of data set increases 
 Unbiased: only asymptotically (see above) 
 Efficient: leads to minimum variance unbiased estimates 
 Normal: asymptotic, but allows us to make statements 

about the volatility of estimates 
 Explainable: we maximize the probability of the data set 

occurring by adjusting the parameters 

Why do we use MLE? 
Distributional analysis 



 
 From the exam 4 syllabus: 

Why do we use MLE? 
Distributional analysis 



 
 Different distance functions, different estimates 
 Not a given that likelihood or squared error is a superior 

measure of fit for any given purpose 
 Least squares implicitly weights larger observations more 

strongly by virtue of its distance function – good? 
 

 It’s not just plain old linear regression 
 Non-linear least squares fits are generally recognized and 

are available in statistical packages 
 Similar in execution to linear regression 
 Not without its own shortcomings, though 

 

Why try least squares? 
Distributional analysis 



 

Refer to spreadsheet #1. 
Curve fitting demonstration on idealized data 

Selected fits, exhibits, and model selection thoughts  
on modified property data 

Setup and example 
Distributional analysis 



 
Value changes from point to interval 

 
Maximum likelihood treatment 
 Numerator changes from PDF to some cumulative function 
 More or less accepted as given methodology 

 

 Least squares treatment? 
 Initial focus of research 
 Several proposals found in literature, all reflecting a decrease in 

information indicated by a censored value 
 
 
 

Censoring adjustment 
Distributional analysis 



 
Credit to Leo Breiman, Yacov Tsur, Amos Zemel 
 What if we “fill in” the missing information?  
 (E) step is a data transformation; only censored values change, 

value = last value + expected conditional error 
 (P) step is a numerical optimization; determine new parameters for 

distribution based on modified data 
 Repeat (E) step with change in expected errors, then (P), then 

repeat until least-squares estimator satisfactorily converges 
 

 Simplifying assumption 
 What can we do to sidestep defining the error distribution? 

The EP’ algorithm 
Distributional analysis 



 

Refer to spreadsheet #2. 
Demonstration of maximum likelihood and least squares 
adjustments for censored observations on idealized data 

Selected fits, exhibits, and model selection thoughts  
on modified liability data 

 

Setup and example 
Distributional analysis 



 
Unable to access portion of the distribution 
Maximum likelihood treatment 
 Denominator changes from 1 to survival function 
 More or less accepted as given methodology 

 

 Least squares treatment 
 Direct corollary – recognize we are not fitting on the entire [0,1] 

domain of possibilities 
 What if we allow the lower bound of the domain to vary with the 

change in fitted parameters? 

 

Truncation adjustment 
Distributional analysis 



 
Transformation 

The observed data point x falls in 
the probability interval [c,1], but in 
order to pull the correct inverse 
CDF, we need its probability over 
[0,1] instead. 
 
If you envision a mixed distribution 
with weight F(c) on zero and S(c) on 
observed data, this provides a direct 
solution to the problem. 
 
Because a CDF must be 
monotonically increasing, the F(c) 
weight generally comes first, so: 
 
F(p) = F(c) + S(c)F(p|p>c) 

Truncation 
point 

X 

0 C 1 

Distributional analysis 



 

Refer to spreadsheet #3. 
Demonstration of truncation adjustments for maximum 

likelihood and least squares on idealized data 

Setup and example 
Distributional analysis 



 
 Still possible for optimization to fail on least squares 
 Truncation workarounds in case of divergence 
 Solution one: judgmentally or analytically select a truncation point 
 Solution two: left-shift data instead and correct afterwards 

Methods have variable degrees of success coping 
with different modifiers and different data 

Modifiers to loss data can sometimes be more 
significant to fit quality than data itself 

Practitioner’s notes 
Distributional analysis 



 
Business Mixes and Large Losses 

We just checked the distribution of loss (Y), not the 
predictors behind loss (X). 

 Business mixes impact Property large loss 
propensities 
 Coverage A 
 Territory / protection class 
 Industry group 
 Sprinkler system 
 Other 

Regression Analysis 



 
 Business mixes impact GL large loss propensities 

 Class or NAIC codes; 
 Sublines 
 Limit groups 
 Table 1,2,3 for PremOP;  
 Table A, B, C for Product and Complete Op 

 Contractors and subcontractors 
 Umbrella coverage 
 Other 

Business Mixes and Large Losses 
Regression Analysis 



 
 Injury mixes impact WC large loss propensities 

 AIA codes 
 ICD9  
 CPT 
 Class and NAICS 
 Drugs 
 Hazard Group 
 Etc. 

Injury Mixes and Large Losses 
Regression Analysis 



 
Commercial Property Large Loss 

 Property large loss by industry group 

Habitional Industrial & Processing Other

Property Large Loss Percentage by Industry 

Over 500K

Over 1M

Regression Analysis 



 
Commercial Property Large Loss 

 Loss distribution is defined by both mean and volatility 
 Volatility is very important for reinsurance pricing and ERM 
 Volatility is often heterogeneous  

 Habitional  Industrial & Processing  Other

Property Large Loss CV by Industry Group  

Over 500K

Over 1M

Regression Analysis 



 
Commercial Property Large Loss 

 Property large loss within IP by manufacture type 

Low Medium High

Property Large Loss Percentage within IP Risks 

Over 500K

Over 1M

Regression Analysis 



 
General Liability Large Loss 

GL large loss by subline 

PremOp Product and Complete Op
Sublines 

GL Large Loss Percentage by Subline 

Over 1M

Over 500K

Regression Analysis 



 
General Liability Large Loss 

GL large loss coefficient of variation by subline 

PremOp Product & CompleteOp

GL Large Loss CV by Subline 

Over500K

Over 1M

Regression Analysis 



 
General Liability Large Loss 

GL large loss within PremOp by ILF table 

1 2 3
PremOp ILF Table 

GL Large Loss Percentage by ILF Table 

Over 1M

Over 500K

Regression Analysis 



 
WC Large Loss: Claims Perspective 

WC large loss by hazard group 

A:1-4 B:5-7

WC Large Loss Percentage by Hazard Group 

Over 500K

Over 1M

Regression Analysis 



 
WC Large Loss: Claims Perspective 

WC large loss coefficient of variation by hazard 
group 

A:1-4 B:5-7

WC Large Loss CV by Hazard Groups 

Over500K

Over1M

Regression Analysis 



 
WC Large Loss: Claims Perspective 

WC large loss within hazard group 3 by AIA code 

A: Low B: Mid C: High

WC Large Loss Percentage within Hazard Group 1-4 by AIA Code 

Over 500K

Over 1M

Regression Analysis 



 
WC Large Loss: Claims Perspective 

WC large loss by Fatality 

No Yes
Fatality 

WC Large Loss Percentage by Fatality 

Over500K

Over 1M

Regression Analysis 



 
WC Large Loss: Claims Perspective 

WC large loss coefficient of variation by fatality 

No Yes
Fatality 

WC Large Loss CV by Fatality 

Over 500K

Over 1M

Regression Analysis 



 
Regression Models 

Model individual policies instead of whole book 
 Contemplate underlying risk characters 
 Granular trending: by peril, by subline, etc. 
 More work than conventional distribution fitting 

 Large loss frequency: logistics or GLM 
 Severity: GLM, log-linear, and other more 

complicated models 

Regression Analysis 



 
Regression Models 

 Severity Model: Double GLM 
 Certain risks can be much more volatile, which implies that GLM 

dispersion factor may not be constant,  
  

 Traditional GLM:   
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑦𝑦� = exp(𝑋𝑋𝛽𝛽1) 
 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝑦𝑦�𝛼𝛼 
 X is the vector of predictive variables including the constant term 
 𝑦𝑦�𝛼𝛼 is the variance function. 

 

 Double GLM: heterogeneous variance  
 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑦𝑦� = exp(𝑋𝑋𝛽𝛽1) 
 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = exp(𝑋𝑋𝛽𝛽2) ∗ 𝑦𝑦�𝛼𝛼 
 𝑋𝑋𝛽𝛽1 is the first GLM to fit mean; 𝑋𝑋𝛽𝛽2 is the second GLM to fit for 

heterogeneous dispersion factor 

Regression Analysis 



 
Regression Models 

 Severity Model: Finite Mixture model 
 Single distribution usually does not model heavy tail densities well 

 
 
 
 
 
 
 
 
 
 
 

 
Commercial property loss has  a longer tail than lognormal 

 

Regression Analysis 



 
Regression Models 

 Severity Model: Finite Mixture model 
 𝑓𝑓 𝑋𝑋,𝛽𝛽1,𝛽𝛽2 = 𝜋𝜋 𝑋𝑋 ∗ 𝑓𝑓1 𝑋𝑋,𝛽𝛽1 + 1 − 𝜋𝜋 𝑋𝑋 ∗ 𝑓𝑓2(𝑋𝑋,𝛽𝛽2) 
 f1 is normal loss distribution; f2 is severe loss 

distribution; X is the vector of predictive variables; 𝜋𝜋 𝑥𝑥  
is the probability of being in a severe distribution 

 𝜋𝜋 𝑥𝑥  varies by business mix.  The probability of plastic 
manufacturers to be in severe distribution is much larger 
than average book 

Regression Analysis 



 
Regression Models 

 Severity Model: Quantile Regression 
 Tail performance can be very different from the mean 
 Predict percentiles of potential loss other than just mean 

or variance 
 Robust and less sensitive to extreme values 

Regression Analysis 

10th 
percentile 

90th 
percentile 

mean 
median 



 
Regression Models 

How to deal with data censorship 
 Tobit 
 Double GLM and FMM with censoring data 
 Solve the maximum likelihood function directly 
 Numerical solutions through R or SAS (Proc nlmixed) 

 EP (Expectation and Projection) algorithm 
1. E: Run regression using censored data 
2. P: fill those censored losses with predicted value from 

the “E” step 
3. E: refit the model using the fitted values on censored 

records 
4. Redo P step and keep iterations 

Regression Analysis 



 
Case Studies 

Case studies will be presented in the seminar 

Regression Analysis 


	Large Loss Distribution and Regression Analyses
	Agenda
	Large losses matter
	Approaches
	Insurance complications
	Why do we use MLE?
	Why do we use MLE?
	Why try least squares?
	Setup and example
	Censoring adjustment
	The EP’ algorithm
	Setup and example
	Truncation adjustment
	Transformation
	Setup and example
	Practitioner’s notes
	Business Mixes and Large Losses
	Business Mixes and Large Losses
	Injury Mixes and Large Losses
	Commercial Property Large Loss
	Commercial Property Large Loss
	Commercial Property Large Loss
	General Liability Large Loss
	General Liability Large Loss
	General Liability Large Loss
	WC Large Loss: Claims Perspective
	WC Large Loss: Claims Perspective
	WC Large Loss: Claims Perspective
	WC Large Loss: Claims Perspective
	WC Large Loss: Claims Perspective
	Regression Models
	Regression Models
	Regression Models
	Regression Models
	Regression Models
	Regression Models
	Case Studies

