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Why Bayes, Why Now

From John Kruschke, Indiana University:

“An open letter to Editors of journals, Chairs of departments, Directors of funding programs,
Directors of graduate training, Reviewers of grants and manuscripts, Researchers,
Teachers, and Students”:

Statistical methods have been evolving rapidly, and many people think it's time to adopt
modern Bayesian data analysis as standard procedure in our scientific practice and in our
educational curriculum. Three reasons:

1. Scientific disciplines from astronomy to zoology are moving to Bayesian data analysis.
We should be leaders of the move, not followers.

2. Modern Bayesian methods provide richer information, with greater flexibility and broader
applicability than 20th century methods. Bayesian methods are intellectually coherent and intuitive.
Bayesian analyses are readily computed with modern software and hardware.

3. Null-hypothesis significance testing (NHST), with its reliance on p values, has many problems.
There is little reason to persist with NHST now that Bayesian methods are accessible to
everyone.

My conclusion from those points is that we should do whatever we can to encourage the

move to Bayesian data analysis.

(I couldn’t have said it better myself...)
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Why Bayes, Why Now

From an Interview with Sharon Bertsch McGrayne in Chance Magazine:

“When | started research on [my] book, | could Google the word ‘Bayesian’ and get 100,000
hits. Recently | got 17 million.”
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not die /33"

how bayes’ rule cracked
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hunted down russian
submarines & emerged
triumphant from two &~
centuries of controversy




Our Profession’s Bayesian Heritage: Early

 Late 18th Century: Thomas Bayes and Pierre-Simon Laplace
formulate the principles of “inverse probability”
* Probabilistic inference from data to model parameters

» Bayes’ intellectual executor, Richard Price, became perhaps the world’s first
consulting actuary (Equitable Life Assurance company, London)

» Price’s — and perhaps Bayes’ — thinking was influenced by the publication of
David Hume’s Treatise on Human Nature (1740)

* 1918:. A. W. Whitney “The Theory of Experience Rating".

» Advocated combining the claims experience of a single risk with that of a
cohort (class, portfolio, ...) of similar risks.

~ ~ W
0=27..,+1-2)- . Z=
,Ll /urlsk( )/uclags W+k

 Estimated pure premium should be a weighted average of the individual risk’s
claim experience with that of the cohort... k is judgmentally determined.



Our Profession’s Bayesian Heritage: Early-Modern

» 1950: Arthur Bailey publishes “Credibility Procedures: Laplace’s
Generalization of Bayes’ Rule and the Combination of Collateral
Knowledge with Observed Data”.

 Anticipates Hans Buhlmann's subsequent work.
* Quoted Richard Price on making inferences from available data.

“At present, practically all methods of statistical estimation appearing in textbooks...
are based on an equivalent to the assumption that any and all collateral information
or a priori knowledge is worthless. There have been rare instances of rebellion
against this philosophy by practical statisticians who have insisted that they actually
had a considerable store of knowledge apart from the specific observations being
analyzed... However it appears to be only in the actuarial field that there has been an
organized revolt against discarding all prior knowledge when an estimate is to be
made using newly acquired data.”




Our Profession’s Bayesian Heritage: Mid-Century Modern

« 1967: Buhlmann’s “greatest accuracy” Bayes credibility model.
* Let X; denote dollars of loss associated with risk i at time .
« Assume X4, ..., X, are iid, conditional on a parameter (vector) 6

* Let m(6;) denote “risk premium”: m(6;)=E[X;|6]

« BUhlmann minimizes mean squared errors:

E[m(ei)—a—zjﬁjxij}z

- ... to arrive at an estimator for m(6.): z- X +(1-2)-u
. ... Where: 7 = n ‘- Eb/ar(xij 16,)
n+k Var (m(6,))

 The within/between variances in k are estimated from the data.
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Our Profession’s Bayesian Heritage: Modern

Texts in Statistical Science
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Bayesian Concepts




Vocabulary

« Exchangeability

 Credible intervals vs confidence intervals
* Predictive distributions

« Shrinkage / Credibility

 Hierarchical models

 “Borrowing strength”

 Markov Chain Monte Carlo Simulation
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Interpreting Probability




It All Starts a Certain Difference of Opinion

* From a mathematical point of view, probabilities are countably
additive, [0,1]-valued functions.
* For all events E: Prob(E) > 0
« If Q denotes the sample apace: Prob(Q2) = 1
* For pairwise disjoint {E}: Prob(E,UE,uU...) = > Prob(E;)
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It All Starts a Certain Difference of Opinion

* From a mathematical point of view, probabilities are countably
additive, [0,1]-valued functions.

* For all events E: Prob(E) > 0
« If Q denotes the sample apace: Prob(Q2) = 1
* For pairwise disjoint {E}: Prob(E,UE,uU...) = > Prob(E;)

 But whenever mathematics is applied to the world, the
relevant concepts must be interpreted.

« E.g. in optics a parabola might represent a reflective surface.

* In biology it might represent some sort of growth. ST—

Self-limiting

* The mathematics is the same either way. NEEEEnE=

-
-

» But the interpretation is crucial.

ou 20 40 60 80 100 120 140 160 180 200

Years

* What is the analogous interpretation of probability functions?

Sl Jrnat
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Take a Simple Example

e Consider the toss of an
ordinary coin.

* Prob(Heads) = %2
IS a mathematical
statement.

 But what does this
statement mean?

15




The Frequentist View

* Probabilities represent frequencies in sequences of repeated
events
« Emanating from situations involving physical randomization.

* “The probability of heads is 2" means that the coin will come up
heads roughly half the time in a sequence of tosses.
» The more tosses, the closer we this relative frequency approaches 0.50.
* Prob(H) = %2 means:

N—oo

Pr(H):% < lim —:%

« Many people find this interpretation most acceptable because it is
“physical” and “objective” and therefore “scientific”.
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The Bayesian View

* Probabilities represent degrees of certainty or uncertainty.

* “The probability of heads is 72" means that the speaker believes
that the coin is fair.

« Ideally (s)he would be willing to pay $1 for a gamble that pays $2 if
the coin lands heads and $0 otherwise.

* People often object to the Bayesian notion because it is
“subjective” and therefore presumably not appropriate in scientific
iInvestigations.

* “My belief is that the probability of an earthquake in San Francisco in the next
decade is 30%”

» “Who cares about what you believe?”

17



Subjective Probability

* “Subjective Probability”
« Maybe too loaded a term?
« Historically a lot of confusion and (rather geeky) polemics {ococatid e

THE FOUNDATIONS OF

« “PROBABILITY DOES NOT EXIST"” — Bruno de Finetti STATISTICS

« “Evidential probability”

« Maybe a more helpful term?

* It is unanimously agreed that statistics depends somehow on probability. But, as
to what probability is and how it is connected with statistics, there has seldom
been such complete disagreement and breakdown of communication since the
Tower of Babel. Doubtless, much of the disagreement is merely terminological
and would disappear under sufficiently sharp analysis.”

— L. J. Savage, The Foundations of Statistics
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A Farsighted Bayesian

* Bruno de Finetti was one of the
most important Bayesian
theorists of the 20" century.

« Some interesting history:
 de Finetti started off as an actuary

 Independently rediscovered the
ideas of the Bloomsbury
mathematician/economist
Frank Ramsey.

« Jimmy Savage introduced
de Finetti’'s work to the
English-speaking world.

« Savage and de Finetti both
appreciated Arthur Bailey’s work in
credibility theory in the 1950s.

19
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A Representation of de Finetti

Bruno de Finetti

From Wikipedia, the free encyclopedia
Bruno de Finetti (13 June 1906 - 20 July 1985) was an Italian probabilist, statistician and actuary, noted for the "operational subjective”

conception of probability. The classic exposition of his distinctive theory is the 1937 “"La prévision: ses lois logiques, ses sources
subjectives,"!" which discussed probability founded on the coherence of betting odds and the consequences of exchangeability.

20



Single-Case Probabilities

* The interpretation of probabilities in terms of limiting relative
frequencies is intuitive at first.

 But often in life and in actuarial science we also find it intuitive to
assign probabilities to events that are not part of a sequence of
Independent random trials.
« What is the probability Obama will win a 2"d term office?

» What is the probability of a magnitude 6.7 or greater earthquake in the San
Francisco bay area before 20307

* What is the probability that the ultimate losses for a cohort of insurance claims
incurred in 2012 will fall in the $1M-$1.2M range?

« What is the probability that the Los Angeles will be the target of a terrorist
attach within the coming decade?

21



Measuring Probabilities

« What is the probability Obama will win a 2"d term office?

* Frequentist answer: | can only answer if Obama’s reelection can
be viewed as a repeatable event in which the uncertainty is due to

randomness.

« And the probability is the relative frequency after the event is embedded in
this long run of repeated trials.

* If it can’t be so embedded... no answer.

« Bayesian answer: the uncertainty is due to lack of knowledge.
* | can quantify my beliefs through betting behavior

« Suppose | will pay $50 for a lottery ticket that will return $200 if Obama is
reelected; nothing otherwise.

« Then my subjective probability is of Obama being elected is 25%.

22



Probability as Coherence: Dutch Book Arguments

« Attributed to Frank Ramsey (of the Bloomsbury Group) and Bruno
de Finetti.

* [f someone’s subjective probabilities do not obey the probability
axioms, then they are “incoherent” in the sense that:

« Someone could write a “Dutch Book™ against that person.

* A series of bets in which the person would lose money on any
outcome.

* [n principle, subjective probabilities can be measured through
betting behavior.
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Learning from Data




Classical and Bayesian Methodology — Learning from Data

* Let’s continue thinking about coin tosses.

 Suppose Persi pulls a coin from his pocket and flips it 12
times. 3 of these tosses land heads. Q

* If Persi were to toss the coin again, what is the probability
it would land heads?

* This seems like a silly example but:

* When thinking about difficult conceptual issues it helps to start with
simple examples.

* And besides, it’s not silly. Suppose last year a company sold
medical malpractice insurance to 12 heart surgeons in a new zip
code, 3 of which had large claims... this year they are thinking about
underwriting a 13" heart surgeon in the same state...

25



How Frequentist and Bayesian Analyses Differ

* The methodological differences between frequentists and
Bayesians emanate from the philosophical difference about the
interpretation of probability.

* Frequentists: the “true probability of heads” is a fact about the
world that is manifested in relative frequencies in repeated tosses.

» The outcome of 3 heads in 12 tosses is one of many possible outcomes of
sampling from the “true distribution in the sky”.

* Probability is assigned to the data... not to model parameters

* Bayesians: the data is a fact in the world. We assign
probabilities to quantities we are uncertain about...

* Probabilities are not assigned to data (although we can incorporate
observation errors/sampling mechanisms in a model).

» Rather, probabilities are assigned to model parameters which we do not
know with certainty.
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A Frequentist Analysis

» To repeat: the data (h=3, n=12) is viewed as the random outcome
of a sampling process that could be repeated ad infinitum.

* From a frequentist POV, what can we infer from the data?
 Let’s assume the events {H,T,T,H...} are iid Bernoulli(0)

* From this assumption it follows that the likelihood function is:

L(@|h=3n=12) He (1-6)"

QZH (1 Q)ZT
6°(1—6)°
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The Frequentist Estimate

 The Maximum
Likelihood Estimate
(MLE) is the value of 6
that maximizes the
likelihood function:

L(8) =6*(1-6)

* In this example:
MLE = 0.25

28

likelihood

Binomial Likelihood Function
3 Heads in 12 Tosses
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uuuuuuuuuuuuuuuuuuuuuuuuuu

What the MLE Means /k

* Note: the likelihood function L(8)= 6°(1-6)° is not a probabilint;/“”ﬂ
function!

* It is a function of 6, with the data {H,T,T,H,...} regarded as fixed.

 Remember frequentists don’t assign probabilities to unknown parameters.

 When we maximize likelihood, we select the value 6 that results In
the model under which the actual observations are most likely to
be observed.

* The MLE tells us “what we think” about the coin given the
observed data.

* But “how sure are we” about “what we think”?

29



Measuring “Confidence”

* Twelve tosses aren’t that many. How reliable is the maximum
likelihood estimate of 0.257

» To address this question we construct a confidence interval:

Pr(LB <6 <UB)=0.95

« LB and UB are random values calculated from the data.

- Here, (LB,UB) = (0.0549, 0.5719)

* Does this mean that there is a 95% probability that 0 falls in the
interval (0.0549, 0.5719)?

* Actually, no.

30



Measuring “Confidence”

- Confidence interval:  Pr(LB< @ <UB)=0.95

* Again we repeat: frequentists only assign probabilities to
repeatable, physically random events like {H,T,T,H,...}...
... not to parameters like 6.

* 0 either is or is not in the interval [0.0549, 0.5719]

« Again... what does the above statement mean?

31



Frequently Asked Question

- Confidence interval:  Pr(LB< @ <UB)=0.95

 What this mean? Answer:

« Suppose we repeated our experiment many times...
* For each of the next 1000 days, Persi will flips his coin 12 times.
» Each time he will construct a confidence interval like the one above

» The resulting interval will differ each day according to how many tosses
come up heads on that day.

« But what we can say is that approximately 950 of these intervals

will contain the true value of heads!
* Is this really what people think when they talk about confidence intervals?

32



Frequently Asked Question

- Confidence interval:  Pr(LB< @ <UB)=0.95

e Our 95% “level of confidence” is a measure of the method used to
calculate LB and UB...

* ... hot a measure of our belief that 0 lies in the specific interval
determined by any particular sample.

* |t all goes back to the fundamental principle that probabilities can
be assigned only to repeatable random quantities.
« {X4, X,, ...}, LB, UB are such quantities.
* 0 is not.
* What a tangled web we weave.

33



The Bayesian Alternative

* For an alternate approach let’s go back to the Bayesian first
principle.

* We assign probabilities to quantities that we are uncertain about.

 We are uncertain about whether the coin is fair... what is the “true
probability of heads” 67

* 0 can take on values between [0,1].

« So the Beta(a,[3) distribution is a good choice.

34



MahaBeta

35

The Beta(a,3) family
distributions is:

Defined on [0,1].
Very flexible.

In just about any
realistic scenario this
family will contain a
reasonable choice for
modeling our
(un)certainty about the
probability of heads.
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Choice of Priors " T(«)T(B)
* The blessing and the
curse of Bayesian A Few Possible Prior Probability Functions
statistics: o
— Beta(1e+05,1e+05)
—— Beta(50,50)
. — Beta(20,20)
* We model uncertainty Beta(1,1)
quantities with © ]
probabilities.

* So even before we
take our data into
account we need to ~
select a “prior”

probability distribution D/ R\

for 0.

0.0 0.2 0.4 0.6 0.8 1.0

theta
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Choice of Priors

 Here are a few choices
that are symmetric with

_T(@+h) po1pq  opa
"= rarp? 9

A Few Possible Prior Probability Functions

respect to the

possibility of the coin
being biased towards
heads of tails. © -

» Beta(1,1) — the “flat
prior”... we have no

Idea whether the coin
is biased, or how \N

biased it is.

Beta(1e+05,1e+05)
Beta(50,50)
Beta(20,20)
Beta(1,1)
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Choice of Priors

* Beta(100000,100000):

we have virtual prior
certainty that the coin
is fair.

* In the limiting case
where we have prior
certainty, it means no
possible evidence
could change our
mind.

38
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A Few Possible Prior Probability Functions

Beta(1e+05,1e+05)
Beta(50,50)
Beta(20,20)
Beta(1,1)

theta




Choice of Priors

» Beta(20,20): an
Intermediate case.

 WWe have some reason
to think that the coin is
biased.

* E.g. maybe Persiis a
magician that has been
known to flip biased
coins in the past.

 But we don’t believe
that the coin is more
likely to be biased

towards heads or tails.

39
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A Few Possible Prior Probability Functions

Beta(50,50)
Beta(20,20)
Beta(1,1)

Beta(1e+05,1e+05)

N
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Updating Subjective Probability

* The prior distribution summarizes our beliefs before we have taken
the data into account.

* The data (3 heads in 12 tosses) might lead us to change our
beliefs about the coin...

* ... SO our probability function over 6 should change accordingly.

» A well known foundational paper on this topic:

Updating Subjective Probability

PERSI DIACONIS and SANDY L. ZABELL*

40



Updating Subjective Probability

« Bayes’ Theorem (a mathematical fact):

Pr(H A E) _ Pr(E|H)Pr(H)

Pr(HE)=—01
(E) Pr(E)

« Bayes’ updating rule (a methodological premise):

» Let P(H) represents our belief in hypothesis H before receiving
evidence E.

» Let P*(H) represent our belief about H after receiving evidence E.

- Bayes Rule: P*(H) = Pr(H|E) Pr(H) — Pr(H|E)

41



Updating Subjective Probability

42

Data

Bayes'

e —» Posterior

Prior

Pr(H) — Pr(H|E)=

Pr(H A E) _ Pr(E|H)Pr(H)

Pr(E) Pr(E)




The Beta-Binomial Case

f(X|6)x(6
- Bayes’' Theorem: T(01X)= j f((X ||6?))7cﬂ(f9))d¢9
- Likelihood: f(X]6)=6°(1-6)

9 1-0)""  T(a+p)

* Prior: 7(0) = — =
jou“-la—u)ﬂ-ldu T(e)T(B)

6°1(1-0)"*

* So by Bayes Rule:

* Posterior: (O] X))o f(X]|0)z(0)=0?1-0)"""

=>» updating takes the form: Beta(er, f)) — Beta(ae+3,5+9)

3heads
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The Probability of Heads:

 Let’'s assume absolutely
no prior knowledge about
whether, or the degree to
which, the coin is biased.

* Maybe Persi drew it at
random from a large urn of
coins, which have uniformly
distributed physical
probabilities of heads.

« Or maybe we just have no
idea what tricks Persi might
have up his sleeve.

* Kind of like life.

44

Prior Uncertainty

The Probability of Heads

Uninformative (Flat) Prior

prior distribution (O flips)

0.0 0.2 0.4 0.6 0.8

theta
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The Probability of Heads:

e Qur datais 3 heads in 12
tosses.

* We use the Bayes
updating rule to update
our belief (probability)
about 6 in the light of the

data.

Beta(1ll) — Beta(4,10)

45

After 12 Flips

The Probability of Heads
After 3 Heads in 12 Tosses

posterior distribution (12 flips)

prior distribution (0 flips)

0.0 0.2 0.4 0.6 0.8

theta

1.0




The Probability of Heads:

» Suppose Persi flips the
coin another 40 times and
the total number of heads
in all 52 tosses is 13.

« 13/562 =0.25

» SO our posterior
distribution is still peaked
at the same place, but
contains less variability
around the mode.

Beta(4,10) — Beta(14,40)
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After 52 Flips (Scenario A)

The Probability of Heads
After 13 Heads in 52 Flips

posterior distribution (52 flips)

posterior distribution (12 flips)

prior distribution (0 flips)

theta

1.0




The Probability of Heads: After 52 Flips (Scenario B)

e Of course it could have

turned out differently The Probability of Heads
] After 27 Heads in 52 Flips

» Here's what our posterior
would look like if Persi’'s
luck changed and the total
number of heads in 52 flips
ended up being 27.

pasterior distribution (52 flips)

° CIOSG to SymmetriC pogterior|distripution (12 flips)

prior digtribution (0 flips)

/N

Beta(4,10) — Beta(28,26) ———— —

0.0 0.2 0.4 0.6 0.8 1.0

theta
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And If We'd Started with an Informative Prior...

* A major weakness of the
Bayesian paradigm: the
need to specify a prior.

* A major strength of the
Bayesian paradigm: the
ability to specify a prior!

« Arigorous way of incorporating
expert judgment and

background knowledge in
one’s analysis.

* The data (3/12) is strongly
tempered by our prior belief.
* A “shrinkage” phenomenon.
« This is a good thing

48

Starting With a Stronger Prior Belief
Beta(20,20) Prior; 3 Heads in 12 Flips

posterior distribution (12 flips)

prior distribution (O flips)

0.2 0.4 0.6 0.8 1.0

theta




The Frequentists’ Declaration of Independence

« So we’ve got the prior probability distribution covered.
* What about the likelihood function?

* Recall that the frequentist MLE method began by assuming that
the coin tosses as iid Bernoulli.

 We assume independence.

* This makes sense given the frequentist premise that 0 is fixed and
thedata{H, T, T, H, ...} is a random draw from a “sampling
distribution in the sky”.

« But does independence make sense from a Bayesian POV?

49



Taleb’s Question

« But does independence make sense from a Bayesian POV?

* Let’s take a page from Nassim Taleb’s book.

Assume that a coin is fair, I.e., has an
equal probabllity of coming up heads or
tails when flipped. I flip it ninety-nine
times and get heads each time. What are
the odds of my getting tails on my next
throw?

50

THE INTERNATIONAL BESTSELLER

The Impact of the Highly Improbable

‘Great fun ... brash, stubborn, entertaining,
opinionated, curious, cajoling’

Nassim Nicholas Taleb @




Taleb’s Question

» ...What are the odds of my getting tails on my next throw?

Dr. John: Trivial question. One half, of course, since you are assuming 50 percent odds for each
and independence between draws.

NNT: What do you say Tony?
Fat Tony: I'd say no more than 1 percent, of course.

NNT: Why so? | gave you the initial assumption of a fair coin, meaning that it was 50 percent
either way.

Fat Tony: You are either full of #3@4& or a pure sucker to buy that “50 pehcent” business. The
coin gotta be loaded. It can’t be a fair game.

(Translation: It is far more likely that your assumptions about the fairness are wrong that the coin
delivering ninety-nine heads in ninety-nine throws.)

NNT: But Dr. John said 50 percent.

Fat Tony (whispering in my ear): | know these guys with the nerd examples from the bank days.
They think way to slow. And they are too commoditized. You can take them for a ride.
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Bayesians Aren’t So Certain

* Independence implies that:

Pr(@|X,=H& X, =H & ..& X,o=H)= f(g)za

* From a Bayesian POV, this implies prior certainty that the coin is
fair.

* Prior certainty: Pr(H|E) = Pr(H)
* Qur beliefs about proposition H will not change.
« Regardless of how strong the evidence E is.

* We cannot be certain about model parameters 6

* We must average over the possible values using a
prior/posterior probability distribution as a weight.
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A Fair Exchange

« Rather than assume independence, Bayesians adopt the
weaker assumption of exchangeability.

« Exchangeability is a kind of symmetry condition that presumably
reflects a corresponding symmetry in our beliefs.
* “the future will resemble the past.”

« Exchangeability: the order of a finite set of random variables
does not affect the joint probability. For all n and permutations o:

Pr(X,=¢,X,=6,.,X,=6)=Pr(X, = € X, = € (2) s X, = a(n))
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de Finetti’s Representation Theorem rm

» Suppose {X;} is exchangeable:

Pr(X,=€,X,=6,,... X, =6,) =Pr(X; =€, X; =€,5 s X, =€,11y) vn,o

 Then the limiting relative frequency lim > ("/ >X:) exists with
probability 1 and:

Pr(i X, =k) = ngk (1-6)"*du(6)

 An exchangeable sequence of is a mixture of iid sequences.

 As the posterior u(0) becomes sharply peaked, the Bayesian predictive
distribution approaches the frequentist model.
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The Importance of Exchangeability

* Analogous to the frequentist assumption of independence, some
form of exchangeability assumption is implicit in all Bayesian
models.

 Often, this will be a “conditional” exchangeability assumption.

* E.g. the observations across times, states, policies, ... are
exchangeable only once we've reflected the relevant information
in the model.

* Inflation across time...
 Variables capturing aspects of a state’s economy, regulatory environment...
 Variables capturing aspects of a policy...
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Frequentism as a Limiting Case of Bayesianism

 de Finetti’s result — and its extensions — shows that a predictive
distribution can be represented as a Bayesian mixture of
frequentist likelihood models.

» Consider the limiting case where our posterior distribution is
sharply peaked around a specific value of 0.
* Either through prior certainty like Dr John
» Or a big data set, such as 495 heads in 1000 tosses

* In this case, the frequentist model is a good approximation of the
Bayesian predictive distribution.
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A Few Words About

Hypothesis Tests




The Strength of Evidence

* For a Bayesian:

* An estimate like the mean of the posterior distribution summarizes what we
think in the light of 3 heads in 12 tosses

A credible interval summarizes the strength of this belief

 For a frequentist, the story is less simple:
* The MLE summarizes what the data tells us about the coin
» Confidence intervals summarize the strength of this evidence

« Another frequentist tool: assessing the “significance” of
evidence using p-values
* Is the evidence strong enough to reject a null hypothesis?
» Ubiquitous in actuarial science and general scientific research
» But should it be?

58



Minding Our p’s

 p-value: the probability of the observed outcome... or a more
extreme outcome... assuming the null hypothesis is true.
* A measure of “surprise”

* [n the coin example, a natural null hypothesis is that the coin is
fair: 0=72

* The probability of 3 or fewer heads assuming 6=" is:

p—value= g (1?)(%)' (1— %)124 =0.073

* We “fail to reject at the 5% significance level” the hypothesis that
the coin is fair.
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p Soup

* One reaction to this logic: do we really go through life either
“rejecting” or “failing to reject” things based on what we see?

« Or do we take actions based on provisional beliefs that are shaped by
evidence?

» But there is a deeper issue.

* On the previous slide we tacitly assumed that Persi set out to flip
the coin 12 times.
« 3 is the random quantity

« But what if Persi had set out to keep flipping the coin until the 3
head appears?
« 12 is the random quantity
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A Likely Story?

» Binomial scenario: Persi flips 12 times
» We do not reject the hypothesis that the coin is fair.

p—value= Z(lzj( ;j (1— %Tz_i =0.073

* Negative Binomial scenario: Persi keeps flipping until n,=3:
» We do reject the hypothesis that the coin is fair.

p—value=1- Z(' ;Zj(;) (1—3:0.0327

 Whether or not we reject depends on what Persi intended to
do when he started flipping!
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A Bayesian Update

« Recall that the Bayesian method is to update our prior
probability via the likelihood function:

6“(1-0) — Kk6°(1-6)°6(1-6)”

=>» Bayesian updating obeys the “likelihood principle”

o All of the information in the data is contained in the likelihood
function.

* This use of p-values violates the likelihood principle.

» Our conclusions depend on results that could have happened in different
repetitions of he trial.

* The data isn’t enough... we need to know what Persi intended to do.
* ... now which looks more “subjective’... frequentist or Bayesian?

* ... and think about the implications of this in the medical/clinical trials
domain.
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Why Isn’'t Everyone a Bayesian?

B. EFRON*

Originally a talk delivered at a conference on Bayesian
statistics, this article attempts to answer the following ques-
tion: why is most scientific data analysis carried out in a
non-Bayesian framework? The argument consists mainly of
some practical examples of data analysis, in which the Bayes-
ian approach is difficult but Fisherian/frequentist solutions
are relatively easy. There is a brief discussion of objectivity
in statistical analyses and of the difficulties of achieving
objectivity within a Bayesian framework. The article ends
with a list of practical advantages of Fisherian/frequentist
methods, which so far seem to have outweighed the philo-
sophical superiority of Bayesianism.

Why Isn’t Everyone a Bayesian?

*B. Efron is Professor, Department of Statistics, Stanford University,

Stanford, CA 94305.

© 1986 American Statistical Association



Why Isn’t Everyone a Bayesian?

» Given that the Bayesian framework is so great, why isn’t it used
more in practice?

« Answer 1: Actually, itis... things have changed rapidly.

« Answer 2: Thoughts on why frequentism has been dominant.

 (Jim’s speculation): Cognitive biases... failures of probabilistic reasoning
+ E.g. the Monty Hall problem, the prosecutor’s fallacy, Kahneman'’s blue taxis

» Much of classical statistics is “automatic” in ways that can be programmed
into canned software packages (PROCs).

» Argument that Bayesian statistics is “subjective” and science isn’t “subjective”.

» Bayesian computation has traditionally been very difficult.

* Pre-1990s: Bayesian practice was largely limited to ad hoc credibility formulas and conjugate
prior relationships.
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Bayesian Computation is Hard

£ (X |6)7(6)

. , : f(@]X)=
Remember Bayes’ Theorem: (@] X) [T (X16)2(6)de

The great virtue of the Bayesian framework:

* |t enables us to calculate a predictive distribution for future
outcomes Y given past outcomes X: f(Y|X)

* E.g. in loss reserving, we can get a predictive distribution of future claim
payments Y given a loss triangle of past payments X.

f(Y|X):_[f(Y|¢9)f(¢9|X)d9:jf(Y|9){ (X ]6)7(0) }de

j f (X |8)7z(6)do

 But in practice all of this integration is intractable... impasse.
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Bayesian Computation




A New World Order

* This impasse came to an end ~1990 when a simulation-based
approach to estimating posterior probabilities was introduced.
* (Circa the fall of the Soviet empire and Francis Fukuyama’s “end of history”)

Sampling-Based Approaches to Calculating

Marginal Densities
ALAN E. GELFAND AND ADRIAN F. M. SMITH*

© 1990 American Statistical Association
Journal of the American Statistical Association
June 1990, Vol. 85, No. 410, Theory and Methods
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Monte Carlo Simulation — Review

» Recall that Monte Carlo simulation enables us to bypass tough
integration problems by taking independent samples from the
distribution and averaging over the samples.

¢ Easy example 95% Condltlonal 95% Conditional Tail Expectation
. . Expected Loss, Given that the Loss Pierces VaR(.95)
Tail Expectation (aka TVaR) for a -
Te]
. . . = Pareto(3,1000) Density
Pareto(3,1000) distribution. i}
E _|
3
1000
, F(x)=1-
> ###Analytical derivation of 95% TVaR — X+1000
> alpha <- 3; theta <- 1000
> Pp <= .85
> VaR <- theta * ( (1-p)~(-1/alpha) - 1):; VaR _
[1] 1714.418
> T'-.’g/;&,-::,,},ig;-‘s + theta * (1-p)”*(-1/alpha) / (alpha-1); TVaR
[1) 3071.626 ) |
b -
> ###Now use Monte Carlo Simulation
> set.seed (652)
> XX <- rpareto (10000000, shape=alpha, scale=theta)

> WEAR(ZX[XX>qUantile (XX, .39} 1) 0 1000 2000 3000 4000 5000

[1)X 3071.933 )
e loss
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Why Traditional Monte Carlo Isn’t Enough

« Monte Carlo simulation is all well and good when we can write
down the probability distribution in a computer program.

 But the problem in Bayesian computation is that we generally
can’t write down an expression for the posterior probability
distribution!

« Specifically: the integral in the denominator gets very nasty very
quickly... especially when 0 is a vector of parameters...

f(X|0)7(6)
j f(X|8)7z(6)do

f(O|X)=

70



Metropolis-Hastings

Sampling




A Random Walk Down Parameter Lane

* OK so we can’t do Monte Carlo because in general we can’t write
down the posterior probability density f(6[X).

» But what if we could set up a random walk through our parameter
space that... in the limit... passes through each point in the
probability space in proportion to the posterior probability density.

* If we could, then we could just use the most recent x000 steps of
that random walk as a good approximation of the posterior
density...

* Yes we can! CHANGE

AN BELIEVE
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Chains We Can Believe In

 The Metropolis-Hastings sampler generates a Markov chain
{6, 65, 05,... } in the following way:

1. Time t=1: select a random initial position 0, in parameter space.

2. Select a proposal distribution p(0) that we will use to select proposed
random steps away from our current position in parameter space.
3. Starting at time t=2: repeat the following until you get convergence:

a) Atstept, generate a proposed 6*~p(6)
b) Also generate u ~ unif(0,1)

o) |fFWR_ f(01X) p6,16)

~f(6,1X) p@ 16.,)

« Step 3c) implies that at step t, we accept the proposed step 6* with
probability min(1,R).
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Bayesian Computation is Easy?

At each step we flip a coin with probability of heads min(1,R) and
accept 6* if the coin lands heads.
« Otherwise reject 6" and stay put at 0, 4.

* But why is this any easier? R contains the dreaded posterior

density f(8]X) that we can’t write down. o f(&|X) p6._,16)
f(6.,1X) (616,

« Here’s why: (& |X)”(9y
/[ HX |9z (8)ds p616")

(6| X)fr(é’ty | P& 16.,)
j f (X |7 (Hd

f(0 | X)z(6) p6,16)
F (61 X)7(6_,) p(H* 16,1)
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Bayesian Computation is Easy.q

At each step we flip a coin with probability of heads min(1,R) and

accept 0" if the coin lands heads.
 Otherwise reject 6" and stay put at 0,_,.

« But why is this any easier? R contains the dreaded posterior
density f(6]X) that we can’t write down. R f(@|X) p6._|6)

* Here's why:

The integrals in the
denominator of Bayes
theorem cancel out...
they are functions only
of the data X, not the
parameters 6.
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f(0 | X)m(8)
/I f <X®<ﬂ>dﬁ P6416)

f (61| X)7(6,_,) p(& 16,,)
1Sk

(6 |X)x(¢) p6416)

f (61 X)7(6,,) p(H* 16,1)




Now We Can Go to the Metropolis

« So now we have something we can easily program into a
computer.

At each step, give yourself a coin with probability of heads
min(1,R) and flip it.

_ @ 1 X)z) p@.19)
f(6_ | X)7(6,,) p(6?* 16,,)

* If the coin lands heads move from 6,_, to 6*
» Otherwise, stay put.

* The result is a Markov chain (step t depends only on step t-1... not
on prior steps). And it converges on the posterior distribution.
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Simple lllustration

* Let’s illustrate MH via a simple example.

» “Target” density that we want to simulate: the lognormal.

F(x|u,0)= Xo_rexp( 7) | z:ln(xo)__/‘

» We take logs so that we add/subtract rather than multiply/divide

log(Xx) —
- “Target” “density”: tgt(x,,u,a)z—ln(a)—O.S*( g(g) ﬂj

* As noted before, we can eliminate terms that cancel out

» Proposal densities:  p(« | 4.,)=N(u., ) ; plo |o,,)=N(o,,])
« The proposal (u',67) is a standard normal step away from the current location.
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Random Walks with 4 Different Starting Points

* We estimate the
lognormal density using
4 separate sets of
starting values.

» Data: 50 random draws
from lognormal(9,2).

®©
S

> round (xx) [oxrder (xx) ]

[1]

(7]
[13]
[19]
(23]
[31]
[37]
[43]
[49]

78

50 210
1037 1544
2865 2947
4348 4770
7128 7612

10486 11380
28737 35448
94977 97028
494979 662527

443 561 596 779
2365 2480 2749 2764
3007 3440 3599 4226
4962 0411 6438 6682
8555 9260 9697 9697

13630 17910 19014 25840
38379 50122 60746 78688
98491 139625 143219 199609
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10

15
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First 5 Metropolis-Hastings Steps
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Random Walks with 4 Different Starting Points

» After 10 iterations, the

lower right chain is 7o
already in the right o
neighborhood. | ﬂ;

0

10

0

g T
Is) 0 5 10 15
»o

w 4

©

< %))

6
N 4
o
0 5 10 15
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o |
-

o0 4

© A

First 10 Metropolis-Hastings Steps

g

10

15
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(9)
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Random Walks with 4 Different Starting Points

 After 20 iterations, only

0

the 3" chain is still in the =
wrong neighborhood. o

sigma
0

10

8

80

First 20 Metropolis-Hastings Steps

&

0
it

14
1
1

15

o |
-

o0 4

© A

Y

15

()
(9)
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Random Walks with 4 Different Starting Points

« After 50 iterations, all 4
chains have arrived in

10

the right neighborhood. .

sigma
0

10

8
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&

0
it

1
1eHko

10

15

10

o |
-

o0 4

© 4

First 50 Metropolis-Hastings Steps

Y
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Random Walks with 4 Different Starting Points

o By 500 chains. it First 500 Metropolis-Hastings Steps

0
10

appears that the burn-in ¢
has long since been o
accomplished.

 The chain continues to

wander.
(UO o
S’ 0 5 10 15 0 5 10 15
 The time the chain = o
spends in a o | o |
neighborhood o o |

approximates the .
posterior probability that §
(u,0) lies in this nbd.
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In 3D

* The true lognormal
parameters are:
u=9 and =2 -

Metropolis-Hastings Posterior Density Estimate

100

* The MH algorithm yields an
estimate of the posterior 50
density: ;

f(u,o| X, X, Xyy)

* This density results from a
diffuse prior

* |t is based on the informatior “
available in the data.
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Metropolis-Hastings Results

Metropolis-Hastings Simulation of Lognormal(9,2)
* The true lognormal mu

parameters are: i
u=9 and o=2 8-
S _
£ o
 The MH simulation is -
gives consistent results: S T T T T T
0 2000 6000 10000
> apply(coda, 2, mean) coda$mu Index
mu sigma
9.077489 2.007377 sigma
> apply(coda, 2, sd) 2 o -
mu sigma o | w0 -
0.2741341 0.2247070 o E
+ Only the final 5000 of the 10000  _ o | sbvbshtdhy
MH iterations were used to S j | | T T T
estimate u,o 15 20 25 3.0 0 2000 6000 10000

84 coda$sigma Index



Metropolis-Hastings Results

* The true lognormal
parameters are:
uw=9 and 6=2

* Note the very rapid

Metropolis-Hastings Simulation of Lognormal(9,2)
mu

convergence despite
unrealistic initial values.

coda$mu

0.0 05 10 15 20

[ I I
1.5 2.0 2.5

85
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o
© T T T T T T
0 2000 6000 10000
Index
sigma
o 4
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IS
D o
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c
€ < —
o | bbbl
I T T T T T T
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An Easier Way to Get the Same Result

e Call JAGS from within R

model {
for (i in 1:n) {
x[i] ~ dlnorm( mu, tau )

mu ~ dnorm(0, .0001)
gau ~ dgamma(. 0001, .0001)

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
mu 9.0830 0.28265 0.007298 0.006878
tau 0.2569 0.05208 0.001345 0.001262
2. Quantiles for each variable:

2.5% 25% 50% T75% 97.5%

mu 8.5053 8.9020 9.0782 9.2648 9.6409
tau 0.1653 0.2206 0.2535 0.2877 0.3769
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Case Studies




Case Study #1

Fitting an Ambiguous L oss Model




JAGS: Just Another Gibbs Sampler

» Gibbs Sampling is a special case of Metropolis-Hastings sampling
In which:
« Each random draw is always accepted (faster convergence)
* No need to specify a proposal density

« Sequentially take draws from the conditional distributions.
Continue until the chain settles down.

* The open-source packages BUGS and JAGS implement Gibbs
sampling.
» Specify the model in a high-level language
 Call from within R
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JAGS Case Study: Pareto Data

» Suppose we are given data for 100 losses and are told that they
represent losses in $1M’s for a new line of specialty insurance.

* We multiply the numbers by 10 for convenience:
 (round the numbers only for display purposes... not in the analysis)

round (x) [oxrder (x) ]

(1] 8 & 8 0 9 © 9 8 & 9 8 & »p o o 23 212 1 1 1 2 3 A A 2
Zél ¥ A 4 1 3 3 X 1 3 1 ¥ 3 £ 2 2 2 2 2 2 £ 2 2 2 39 3
k1] 3 3 3 38 § 8 3 83 3 4 4 4 5 5§ 5 5 5§ & 6 6 6 &6 6 6 ©
Z?G] 2 @ ¥ P 6 & 9 91910 3F X2 12 12 12 12 33 13 13 16 17T 18 27 30 31

« We are asked to estimate the 99t percentile Value at Risk (VaR).
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Exploratory Data Analysis

« Just to help visualize

QQ Plot of Data Against MLE Gamma

the data:
8 > MLE <- fitdistr(x, "gamma"); MLE

* Perform gamma MLE fit shape rate
0.77529733 0.15655709

» Create a QQ plot. o | (0.03432248) (0.02605526) ®
[1) 4.551048
- Data doesn’t look q 4T ,
terribly inconsistent R ’
with a gamma... I ;
o | %
- ... but is this like ) ot
concluding that the o
coin is biased after 12
tosses? o -
(l) ; 1|0 1|5 2|O 2|5 3|0

g.obs
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Thinking More About the Problem

* The scale parameter A of our gamma(d,A) model is proportional to
the eo*B1X1+B2X2+... from a gamma GLM.

* We're not given any covariates, but that doesn’t mean that
different risks don’t have different expected loss amounts.

* So maybe we should let A vary randomly: A ~ gamma(o.,0)

 And since we are uncertain about the values of 0,a,0, we should
specify prior distributions for them.
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The Model

* We let A vary randomly

» This is assuming that losses are generated from a mixture of processes, each
with a different innate expected size of loss.

* Analogous to putting covariates in a Gamma GLM

» Other assumptions:
* If =1 = gamma mixture of exponentials = Pareto(.,0)
— But rather than assume this, we put a diffuse distribution on 8.
« Informative prior on 6 reflects overall scale of the data.
* Diffuse prior on o,

odel {
or (i in1:n) {
x[1] ~ dgamma( delta, lambda[i] )

o is all-important... lambda[i] ~ dgamma( alpha, theta )
corresponds to dispersion in elta ~ dgamma(.1, .1)

the underlying loss- alpha ~ dunif(0, 100)

generating processes. heta ~ dgamma(10, 1)
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Results

2.5% 25% S50% 75% 97.5%
delta 0.768 0.9124 0.9962 1.085 1.284
alpha 1.840 2.5739 3.0383 3.540 4.767
theta 5.207 8.5010 10.5526 12.829 17.596

* Well, this is nice:

Trace of delta Density of delta

2 o |
. = (o]
* The 3 different random i o ]
- o™~
Walks\settled down after - e ]
@ -
10,000 ations " L R S
\10000/ 11000 12000 13000 06 08 10 12 14 16
terations N=1000 Bandwidth = 0.02748
Trace of alpha Density of alpha
=
o
o
o
o | .
© T T T T T T
10000 11000 12000 13000 1 2 3 5 6
tterations N=1000 Bandwidth = 0.1541
Trace of theta Density of theta
© o
o~ - -
— o =
o ] @ w ]
- 4 o -
i L3N =
0 y o 7
. Q - .
I I I I 1 I o 1 I I I I
10000 11000 12000 13000 0 5 10 15 20 25
Rerations N=1000 Bandwidth = 0.6832
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2.5% 25% 50% 75% 97.5%
Results delta 0.768 0.9124 .9965/‘ 1.085 1.284
alpha 1.840 2.5739 .0383 3.540 4.767
theta 5.207 8. 0 10.5526 12.829 17.596

 Well, this is nice: T/M’@ Dy oF dene

 The 3 different random - o]
walks settled down afte e ]
10,000 burn-in iterati s e
) . \\ o 10000 11000 12000 13000 0.6 08 1.0 1.2 1.4 16
. Recqf8=1 implies a . _
- lterations N = 1000 Bandwidth = 0.02748
gamma mixtures of
exponentials. .. which is Trace of alpha Density of alpha
Pareto. )
S - T T T T T .
10000 11000 12000 13000 1 2 3 4 s 6
terations N =1000 Bandwidth = 0.1541
Trace of theta Density of theta
10000 11000 12000 13000 - 0 5 10 15 20 25

95 lterations N=1000 Bandwidth = 0.6832



Results

* Well, this is nice:

 The 3 different random
walks settled down after
10,000 burn-in iterations

» Recall 6=1 implies a
gamma mixtures of
exponentials... which is
Pareto.

« The mean and variance ¢
a Pareto (3,10)are 5 and
33.3 respectively... close
to the data’s sample
averages.
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Results

* Well, this is nice:

 The 3 different random
walks settled down after
10,000 burn-in iterations

» Recall 6=1 implies a
gamma mixtures of
exponentials... which is
Pareto.

« The mean and variance c
a Pareto (3,10) are 5 and
33.3 respectively... close
to the data’s sample
averages.

-/A/r/{d we get a 3D RN
- posterior distribution...
\r\efleoting our uncertainty.
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Now Simplify

* Let’s just assume that
the data is Pareto

(5=1).

 Purely for illustration
* May be unjustified

* Rerunning the model
yields broadly
consistent results.

model {

for (i in1l:n) {
x[i] ~ dgamma
Tambda[i] ~ d

alpha ~ dunif(0, 100)
gheta ~ dgamma(10, 1)

Tambda[i] )
( alpha, thet

20

15

10

Ty]

2.5%
alpha 1.91 2.
theta 5.89 8.

Trace of alpha
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Posterior Distribution VaR99 Estlmates

6]1111‘.1;‘.1‘.:'.2 2 2 2 2 2 2 2 2 2 3 3

761 7 7 7 7 8 8 9 9101011 12 12 12 12 12 13 13 13 16 17 18 27 30 31
* If we had settled for Estimated Bayesian Posterior Distribution of 99% VaR
our initial Gamma MLE
fit, our estimate would = i ok ca
have likely been way 11 — Pareto(3,10)
too low. S - i
 Just reporting the VaR S I
for a Pareto(3,10) fit | 1
doesn’t tell the whole S - .
story either. ]
« Parameter uncertainty S
results in widely ° ﬂ
divergent VaR estimates. °
* In real life, the next step S | | | -
would be to specify more 20 40 60 80 100

informative priors...
” VaR(0.99, alph, thet)



Case Study #2

Workers Comp Claim Freguency




Data and Problem

* We have 7 years of Workers Comp data
* For each of 7 years we are given payroll and claim count by class.

* Let’s build a Bayesian hierarchical Poisson GLM model on years 1-6 and
compare the result with the actual claim counts from year 7.

 Data is from Start Klugman 1992 book on Bayesian Statistics for actuarial
science.

> dim(dat)
[1] 893 5
> round (nrow(dat)/7)

[1] 128
> summary (dat)
class year payroll clmcnt

Min. s 100 Min. :1.000 Min. - 0.201 Min. 0.00

1st Qu.: 35.00 12t Qu.:2.000 1st Qu.: 75.521 1st Qu.: 1.00

Median : 69.00 Median :4.000 Median : 188.862 Median : 7.00

Mean : 67.96 Mean :4.009 Mean : 713.064 Mean s 27929

3rd Qu.:101.00 3rd Qu.:6.000 3rd Qu.: 602.841 3rd Qu.: 21.00
101 Max. £133.00 Max. :7.000 Max. :21163.600 Max. :228.00



Exploratory Data Analysis

« The endgame is to build a Bayesian hierarchical GLM model.

 But in the spirit of data exploration, it makes sense to built empirical
Bayes models first.
« This is essentially a Buhlmann-Straub type credibility model.

 This will help us get a feel for how much “shrinkage” (credibility-weighting) is
called for.

« Compare credibility weighted result with simply calculating empirical 6-year
claim frequency by class.

ciment, ~ Poi(payroll, 4. ., )
ﬂj - N(ﬂ/wo-ﬂ)
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Shrinkage Effect of Hierarchical Model

° TOp row: estimated claim Modeled Claim Frequency by Class
frequenCieS from un- Poisson Models: No Pooling and Simple Credibility
pooled model.

» Separately calculate
#claims/payroll by class

36 90
46 14 & 39

no pool T ([ HEim

« Bottom row: estimated
claim frequencies from
Poisson hierarchical
(credibility) model.

 Credibility estimates are
“shrunk” towards the

grand mean. | ! | |
0.00 grand mean 0.05 0.10

Claim Frequency
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Shrinkage Effect of Hierarchical Model

s Let's plot the claim Modeled Claim Frequency by Class
frequenCieS Only for Poisson Models: No Pooling and Simple Credibility
classes that experience a ™ o

no pool

shrinkage effect is 5% or o il
greater. AL

» Dotted line: shrinkage
between 5=10%.

« Solid line: shrinkage > 10%

hierach { '\—

| | |
0.00 grand mean 0.05 0.10

Claim Frequency
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Shrinkage Effect of Hierarchical Model

 The most extreme Modeled Claim Frequency by Class
Shrinkage occurs for Poisson Models: No Pooling and Simple Credibility
class 61.

* Only 1 claim in years 3-6. no pool 7

» But very low payroll results
in a large pre-shrunk
estimated frequency.

class year payroll clmcnt freq fioPool hierarchical

61 3 0.288 0 0.00 0.303 0.055 \7
61 4 0.433 1 2.30p 0.303 0.055

61 5 1.312 0 0.009 0.303 0.055

61 6 1.268 0 0.000\ 0.303 0.055

61 T 0.806 0 0.000 \Q.303

hierach

0.00 grand mean 0.05 0.10

Claim Frequency
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Shrinkage Effect of Hierarchical Model

» Shrinkage also occurs for

class 63.
* More payroll than class 61
but similar logic.

class year payroll clmcnt freq

63 1 3.119 0 oO. 0.043 0.
63 2 3.685 0 0O 0.043 0
63 3 3.764 0 0O 0.043 0
63 4 3.831 0 o 0.043 0
63 S 4.993 1 0. 0.043 0
63 6 3.780 0 0. 0.043 0
63 f 2.618 0 0. 0.043 0
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oPool hierarchical

no pool

034

.034
. 034
.034
.034
.034
.034

Modeled Claim Frequency by Class
Poisson Models: No Pooling and Simple Credibility

0.00

grand mean

0.05

Claim Frequency



Now Specify a Fully Bayesian Model

* Here we specify a fully Bayesian model.
« Still Poisson regression with an offset (y[i] is claim count)
« Throw in a class-level covariate (relative “size” of the class).

* Replace year-7 actual values with missing values so that we model the year-7
results and can compare actual with posterior credible interval.

* Very flexible framework... could add in time trend as next step.

model {
for (i in 1 n) {
¥ i] ~ dpois( lambda[i] )
og(]ambda[1]) <- offset[i] + alphal[class[i]] + epsilon[i]
frset[i] <- log(w[i])
epsilon[i] ~ dnorm(0, tau.epsilon)

for (j in 1:3) {
a]pha[%] ~ dnorm(a1pha hat[J], tau.class)
alpha.hat[j] <- g 1*s1ze[j]
theta[j] <- exp(a1pha at[jil)

¥

g.0 ~ dnorm(0, 0.0001)

g.1 ~ dnorm(0, 0.0001)

tau.class <- pow(s1 ma.class, -2)
sigma.class ~ dunif(0, 100)

tau.epsilon <- pow(sigma.epsilon, -2)
sigma. epsilon ~ dun1f%0 100)

gor (i in 1:n.new) { yhat[1] <- y[new[i]] }

107



A Credible Result

 Let’s rank the top 30
WC classes by the
median of the posterior
predictive density of
year-/ claim count.

* 87% of the top 30
classes have actual
year-/ claim count that
falls within the 90%
posterior credible
Interval.
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Top 30 WC Classes Ranked by Median Predicted Claim Count
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A Credible Result

. . Top 80 WC Classes Ranked by Median Predicted Claim Count
* If we increase this to

the top-80, the oo ¥ o
corresponding number
drops to 74%.

109 Year 7 Claim Count



A Credible Result

 Now we look at the
top-30, ranked in
descending order by
payroll.

* 83% of the top 30
classes have actual
year-/ claim count that
falls within the 90%
posterior credible
Interval.
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