

Agenda

- Increased vs. Basic Limits Ratemaking
- Loss Severity Distributions
- Effects of Trend
- By Limit and Layer
- Components of ILF Calculation
- Mixed Exponential Methodology
- Deductible and Layer Pricing

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

This allows for ILFs to be developed by an examination of the relative severities ONLY

$$
I L F_{k}=\frac{E(\text { Erequency }) \times E\left(\text { Severity }_{k}\right)}{E(\text { Frequency }) \times E\left(\text { Severity }_{B}\right)}
$$

$$
=\frac{E\left(\text { Severity }_{k}\right)}{E\left(\text { Severity }_{B}\right)}
$$

Limited Average Severity (LAS)

- Defined as the average size of loss, where all losses are limited to a particular value.
- Thus, the ILF can be defined as the ratio of two limited average severities.
- $\operatorname{ILF}(\mathrm{k})=\operatorname{LAS}(\mathrm{k}) \div \operatorname{LAS}(\mathrm{B})$

Example					
	Losses	$@ 100,000$ Limit		@1 Mill Limit	50,000
:---:					
75,000					
150,000					
250,000					
$1,250,000$					

Example (cont'd)

Losses	$@ 100,000$ Limit	@1 Mill Limit
50,000	50,000	
75,000	75,000	
150,000	100,000	
250,000	100,000	
$1,250,000$	$\underline{100,000}$	
$\mathbf{1 , 7 7 5 , 0 0 0}$	$\mathbf{4 2 5 , 0 0 0}$	

Example (cont'd)

Losses	$@ 100,000$ Limit	$@ 1$ Mill Limit
50,000	50,000	50,000
75,000	75,000	75,000
150,000	100,000	150,000
250,000	100,000	250,000
$\underline{1,250,000}$	$\underline{100,000}$	$\underline{1,000,000}$
$\mathbf{1 , 7 7 5 , 0 0 0}$	$\mathbf{4 2 5 , 0 0 0}$	$\mathbf{1 , 5 2 5 , 0 0 0}$

Example (cont'd)

Example (cont'd)	
Total Losses	\$1,775,000
Limited to \$100,000 (Basic Limit)	$\begin{gathered} \$ 425,000 / 5 \\ =\$ 85,000 \end{gathered}$
Limited to \$1,000,000	$\begin{gathered} \$ 1,525,000 / 5 \\ =\$ 305,000 \\ \hline \end{gathered}$
Increased Limits Factor (ILF)	$\begin{gathered} \$ 305,000 / 85,000 \\ =3.588 \\ \hline \end{gathered}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Empirical Data - ILFs

Lower	Upper	Losses	Occs.	Average
1	100,000	$25,000,000$	1,000	25,000
100,001	250,000	$75,000,000$	500	150,000
250,001	500,000	$60,000,000$	200	300,000
500,001	1 Million	$30,000,000$	50	600,000
1 Million	-	$15,000,000$	10	$1,500,000$

\qquad

Empirical Data - ILFs (cont'd)

LAS @ 100,000

$$
\begin{gathered}
(25,000,000+760 \times 100,000) \div 1760 \\
=57,386
\end{gathered}
$$

LAS @ 1,000,000
$(190,000,000+10 \times 1,000,000) \div 1760$

$$
=113,636
$$

Empirical ILF $=1.98$

Insurance Loss Distributions

- Loss Severity Distributions are Skewed
- Many Small Losses/Fewer Larger Losses
- Yet Larger Losses, though fewer in number, are a significant amount of total dollars of loss.

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Limited Average Severity

(for policy limit k)
\qquad

- Size method - vertical
$\int_{0}^{k} x d F(x)+k[1-F(k)]$
\qquad
- Layer method - horizontal
$\int_{0}^{k}[1-F(x)] d x$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
"Consistency" of ILFs - Example
(cont'd)

Limit	ILF	Diff. Lim.	Diff. ILF	Marginal
100,000	1.00	-	-	-
250,000	1.40	150	0.40	
500,000	1.80	250	0.40	
1 Million	2.75	500	0.95	
2 Million	4.30	1,000	1.55	
5 Million	5.50	3,000	1.20	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
"Consistency" of ILFs - Example (cont'd)

Limit	ILF	Diff. Lim.	Diff. ILF	Marginal
100,000	1.00	-	-	-
250,000	1.40	150	0.40	.0027
500,000	1.80	250	0.40	.0016
1 Million	2.75	500	0.95	.0019
2 Million	4.30	1,000	1.55	.00155
5 Million	5.50	3,000	1.20	.0004

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
"Consistency" of ILFs - Example \qquad
(cont'd)

Limit	ILF	Diff. Lim.	Diff. ILF	Marginal
100,000	1.00	-	-	-
250,000	1.40	150	0.40	.0027
500,000	1.80	250	0.40	.0016
1 Million	2.75	500	0.95	$.0019^{*}$
2 Million	4.30	1,000	1.55	.00155
5 Million	5.50	3,000	1.20	.0004

\qquad
\qquad
\qquad
\qquad
\qquad

* Inconsistent pattern

Inflation - Leveraged Effect

- Generally, trends for higher limits will be higher than basic limit trends.
- Also, Excess Layer trends will generally exceed total limits trends.

Requires steadily increasing trend.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Effect of $+10 \%$ Trend @ $\$ 500,000$ Limit

Loss Amount (\$)	$@ \$ 500,000$ Limit	
	Pre-Trend (\$)	Post-Trend (\$)
50,000	50,000	55,000
250,000	250,000	275,000
490,000	490,000	500,000
750,000	500,000	500,000
925,000	500,000	500,000
$1,825,000$	500,000	500,000
Total	$2,290,000$	$2,330,000$
Realized Trend	$+1.7 \%$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Effect of $+10 \%$ Trend @ $\$ 250,000$ Limit		
Loss Amount (\$)	@ \$250,000 Limit	
Loss Amount (S)	Pre-Trend (S)	Post-Trend ()
50,000	50,000	55,000
250,000	250,000	250,000
490,000	250,000	250,000
750,000	250,000	250,000
925,000	250,000	250,000
1,825,000	250,000	250,000
Total	1,300,000	1,305,000
Realized Trend	+0.4\%	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example Summary
 Trend Effect by Limit

- \$100,000: + 0.9%
- \$250,000: + 0.4%
- $\$ 500,000$: $+1.7 \%$
- \$1,000,000: + 6.6 \%
- Overall: +10.0 \%

Trends generally increase with the limit.

| Example: Effect of $+10 \%$ Trend |
| :---: | :---: | :---: |
| | | Loss Amount (\$) | $\$ 250,000$ excess of $\$ 250,000$ layer | | |
| :---: | :---: | :---: | :---: |
| | Pre-Trend (\$) | Post-Trend (\$) | |
| 50,000 | - | - | |
| 250,000 | - | 25,000 | |
| 490,000 | 240,000 | 250,000 | |
| 750,000 | 250,000 | 250,000 | |
| 925,000 | 250,000 | 250,000 | |
| $1,825,000$ | 250,000 | 250,000 | |
| Total | 990,000 | $1,025,000$ | |
| Realized Trend | $+3.5 \%$ | | |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| Example: Effect of $+10 \%$ Trend |
| :---: | :---: | :---: |
| | | Loss Amount (\$) | $\$ 500,000$ excess of $\$ 500,000$ layer | |
| :---: | :---: | :---: |
| | Pre-Trend (\$) | Post-Trend (\$) |
| 50,000 | - | - |
| 250,000 | - | - |
| 490,000 | - | 39,000 |
| 750,000 | 250,000 | 325,000 |
| 925,000 | 425,000 | 500,000 |
| $1,825,000$ | 500,000 | 500,000 |
| Total | $1,175,000$ | $1,364,000$ |
| Realized Trend | $+16.1 \%$ | |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Commercial Automobile

\qquad
ISO Aggregate Data - BI Trends
Calendar Year Data Through 3/31/2008
(Quarterly year-ending points)
\qquad

Limit	12-point fit	24-point fit
$\$ 50,000$	2.4%	3.0%
$\$ 100,000$	3.1%	3.6%
$\$ 250,000$	3.9%	4.5%
$\$ 500,000$	4.5%	5.3%
$\$ 1,000,000$	5.1%	5.9%
Total	4.8%	6.3%

\qquad
\qquad
\qquad
\qquad
\qquad

Components of ILFs

- Expected Loss
- Allocated Loss Adjustment Expense (ALAE)
- Unallocated Loss Adjustment Expense (ULAE)
- Parameter Risk Load

■ Process Risk Load

\qquad
\qquad

ALAE Provision Determination

- Estimate ALAE/Total Limit Loss Ratio
- Find Average LAS (Limited Average \qquad Severity) Across Limits
- Multiply
- 0.062 * $10,941=678$
- Use ALAE Provision at each limit
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Unallocated LAE (ULAE)

- Average Claims Processing Overhead Costs - e.g. Salaries of Claims Adjusters
- Percentage Loading into ILFs for All Limits
- Average ULAE as a percentage of Losses plus ALAE
- Loading Based on Financial Data
- Ratio of ULAE to Incurred Loss + ALAE - 7.5\% Loading in Upcoming Example

Process Risk Load

■ Process Risk --- the inherent variability of the insurance process, reflected in the \qquad difference between actual losses and expected losses. \qquad

- Charge varies by limit
\qquad
\qquad
\qquad

Parameter Risk Load

■ Parameter Risk --- the inherent variability of the estimation process, reflected in the difference between theoretical (true but unknown) expected losses and the estimated expected losses.

- Charge varies by limit
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Increased Limits Factors (ILFs)
ILF @ Policy Limit (k) is equal to:
$\operatorname{LAS}(\mathrm{k})+\operatorname{ALAE}(\mathrm{k})+\operatorname{ULAE}(\mathrm{k})+\operatorname{RL}(\mathrm{k})$
$\operatorname{LAS}(\mathrm{B})+\operatorname{ALAE}(\mathrm{B})+\operatorname{ULAE}(B)+\mathrm{RL}(B)$

Components of ILFs

\qquad

Issues with Constructing ILF Tables

- Policy Limit Censorship
- Excess and Deductible Data \qquad
- Data is from several accident years
- Trend
- Loss Development
- Data is Sparse at Higher Limits

\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Empirical Survival Distributions

- Paid Settled Occurrences are Organized by Accident Year and Payment Lag.
- After trending, a survival distribution is constructed for each payment lag, using discrete loss size layers. \qquad
- Conditional Survival Probabilities (CSPs) are calculated for each layer.
- Successive CSPs are multiplied to create groundup survival distribution.

Conditional Survival Probabilities

- The probability that an occurrence exceeds the upper bound of a discrete layer, given that it exceeds the lower bound of the layer is a CSP.
- Attachment Point must be less than or equal to lower bound.
- Policy Limit + Attachment Point must be greater than or equal to upper bound.

Empirical Survival Distributions

- Successive CSPs are multiplied to create ground-up survival distribution.
- Done separately for each payment lag.
- Uses many discrete size layers.
- Allows for easy inclusion of excess and deductible loss occurrences.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Payment Lag Process

- Payment Lag =
(Payment Year - Accident Year) +1
■ Loss Size tends to increase at higher lags
- Payment Lag Distribution is Constructed \qquad
- Used to Combine By-Lag Empirical Loss

Distributions to generate an overall
Distribution

- Implicitly Accounts for Loss Development
\qquad
\qquad
\qquad
\qquad
\qquad

Payment Lag Process (cont'd)

- Payment Lag Distribution uses three parameters R1, R2, R3
R1 $=\frac{\text { Expected \% of Occ. Paid in lag 2 }}{\text { Expected \% of Occ. Paid in lag 1 }}$
R2 $=\frac{\text { Expected \% of Occ. Paid in lag 3 }}{\text { Expected \% of Occ. Paid in lag 2 }}$
R3 $=\frac{\text { Expected \% of Occ. Paid in lag }(\mathrm{n}+1)}{\text { Expected \% of Occ. Paid in lag }(\mathrm{n})}$
(Note that lags 5 and higher are combined - C. Auto)

Payment Lag Process (cont'd) \qquad

Acc. Year	Lag 1 Occ	Lag 2 Occ	Ratio of Lag 2 / 1
2002		2,850	
2003	10,000	3,000	0.300
2004	11,000	3,100	0.282
2005	12,000	3,500	0.292
2006	13,000	3,750	0.288
2007	14,000		
Total $03-06$	46,000	13,350	0.290

Lag Weights

- Lag 1 wt. $=1 \div \mathrm{k}$
- Lag $2 \mathrm{wt} .=\mathrm{R} 1 \div \mathrm{k}$
- Lag $3 \mathrm{wt} .=\mathrm{R} 1 \times \mathrm{R} 2 \div \mathrm{k}$
- Lag $4 \mathrm{wt} .=\mathrm{R} 1 \times \mathrm{R} 2 \times \mathrm{R} 3 \div \mathrm{k}$
- Lag $5 \mathrm{wt} .=\mathrm{R} 1 \times \mathrm{R} 2 \times\left[\mathrm{R} 3^{2} \div(1-\mathrm{R} 3)\right] \div \mathrm{k}$
- Where $\mathrm{k}=1+\mathrm{R} 1+[\mathrm{R} 1 \times \mathrm{R} 2] \div[1-\mathrm{R} 3]$

Lag Weights (cont'd)

- Represent \% of ground-up occurrences in each lag \qquad
- Umbrella/Excess policies not included
- R1, R2, R3 estimated via maximum likelihood.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tail of the Distribution

- Data is sparse at high loss sizes
- An appropriate curve is selected to model \qquad the tail (e.g. a Truncated Pareto).
- Fit to model the behavior of the data in the highest credible intervals - then extrapolate.
- Smoothes the tail of the distribution.
- A Mixed Exponential is then fit to the resulting Survival Distribution Function
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple Exponential

- Mean parameter: μ
- Policy Limit: PL

$$
S D F(x)=e^{-x / \mu}=1-C D F(x)
$$

$L A S(P L)=\mu\left[1-e^{-P L / \mu}\right]$

Mixed Exponential

- Weighted Average of Exponentials
- Each Exponential has Two Parameters mean $\left(\mu_{\mathrm{i}}\right)$ and weight $\left(\mathrm{w}_{\mathrm{i}}\right)$
- Weights sum to unity

$$
\begin{aligned}
& S D F(x)=\sum_{i}\left[w_{i} e^{-x / \mu_{i}}\right] \quad \text { *PL: Policy Limit } \\
& L A S(P L)=\sum_{i} w_{i} \mu_{i}\left[1-e^{-P L / \mu_{i}}\right]
\end{aligned}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mixed Exponential (cont'd)
2008 Commercial Auto I/L Review

- Number of individual exponentials vary by state group/table
- Range between nine and eleven exponentials
- Highest mean limited to $100,000,000$
- Additional CSP layers evaluated (68 vs. 52)

Sample of Actual Fitted Distribution

Mean	Weight
2,763	0.824796
24,548	0.159065
275,654	0.014444
$1,917,469$	0.001624
$10,000,000$	0.000071

Calculation of "Raw" ILF

$$
\begin{aligned}
& L A S(P L)=\sum_{i} w_{i} \mu_{i}\left[1-e^{-P L / \mu_{i}}\right] \\
& \operatorname{LAS}(100,000)=7,494 \\
& \operatorname{LAS}(1,000,000)=11,392 \\
& I L F=\frac{\operatorname{LAS}(1,000,000)}{\operatorname{LAS}(100,000)}=\frac{11,392}{7,494}=1.52
\end{aligned}
$$

LAS Calculation Details			
Mean 100 K LAS 1 M LAS Weight 2,763 2,763 2,763 24,548 24,130 24,548 275,654 83,869 268,328 $1,917,469$ 97,437 779,227 $10,000,000$ 99,502 951,626 0.0159065 Wtd. Average 7,494 11,392			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Deductibles

- Reduction of Damages
- Insurer is responsible for losses in excess of the deductible, up to the point where an insurer pays an amount equal to the policy limit
- An insurer may pay for losses in layers above the policy limit (But, total amount paid will not exceed the limit)
- Impairment of Limits
- The maximum amount paid is the policy limit minus the deductible

Impairment of Limits Example

Loss Size	\# of Claims	Total Losses	Average Loss	Losses Net of Deductible		
			$\$ 100$	$\$ 200$	$\$ 500$	
0 to 100	500	30,000	60	0	0	0
101 to 200	350	54,250	155	19,250	0	0
201 to 500	550	182,625	332	$?$	$?$	0
$501+$	335	375,125	1120			
Total	1,735	642,000	370			
Loss Eliminated						
L.E.R.						

? Please calculate the missing values

Impairment of Limits Example

 (cont'd)| Loss Size | \# of
 Claims | Total
 Losses | Average
 Loss | Losses Net of Deductible | | |
| :--- | :---: | :---: | :---: | ---: | ---: | ---: |
| | | | $\$ 100$ | $\$ 200$ | $\$ 500$ | |
| 0 to 100 | 500 | 30,000 | 60 | 0 | 0 | 0 |
| 101 to 200 | 350 | 54,250 | 155 | 19,250 | 0 | 0 |
| 201 to 500 | 550 | 182,625 | 332 | 127,625 | | 0 |
| $501+$ | 335 | 375,125 | 1120 | | | |
| Total | 1,735 | 642,000 | 370 | | | |
| Loss Eliminated | | | | | | |
| L.E.R. | | | | | | |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\square \square \square \square	Impa (cont'd	nent	$\text { of } L$	mit	Exa	mpl	
\square	Loss Size	$\begin{gathered} \text { \# of } \\ \text { Claims } \end{gathered}$	TotalLosses	Average Loss	Losses Net of Deductible		
\square					\$100	\$200	\$500
\square	0 to 100	500	30,000	60	0	0	0
\square	101 to 200	350	54,250	155	19,250	0	0
\square	201 to 500	550	182,625	332	127,625	72,625	0
\square	$501+$	335	375,125	1120			
\square	Total	1,735	642,000	370			
\square	Loss Eliminate						
\square	L.E.R.						

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Impairment of Limits Example (cont'd)

Loss Size	\# ofClaims	Total Losses	Average Loss	Losses Net of Deductible		
				\$100	\$200	\$500
0 to 100	500	30,000	60	0	0	0
101 to 200	350	54,250	155	19,250	0	0
201 to 500	550	182,625	332	127,625	72,625	0
$501+$	335	375,125	1120	341,625	308,125	207,625
Total	1,735	642,000	370	488,500	380,750	207,625
Loss Eliminated				153,500	261,250	434,375
L.E.R.				0.239	0.407	. 677

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Comparison of Deductibles

Example 1:

Policy Limit:	$\$ 100,000$
Deductible:	$\$ 25,000$
Occurrence of Loss:	$\$ 100,000$

Reduction of Damages	Impairment of Limits
Loss does not exceed Pol. Limit, so:	

Liability Deductibles

- Reduction of Damages Basis
- Apply to third party insurance \qquad
- Insurer handles all claims
- Loss Savings
- No Loss Adjustment Expense Savings
- Deductible Reimbursement
- Risk of Non-Reimbursement
- Discount Factor
\qquad

\qquad
\qquad
\qquad

\qquad

Loss Elimination Ratio (cont'd)

- Deductible (i)
- Policy Limit (j)
- Consider [LAS($\mathrm{i}+\mathrm{j}$) $-\operatorname{LAS}(\mathrm{i})] \div \operatorname{LAS}(\mathrm{j})$
- This represents costs under deductible as a fraction of costs without a deductible.
- One minus this quantity is the (indemnity) LER
- Equal to

$$
[\operatorname{LAS}(\mathrm{j})-\operatorname{LAS}(\mathrm{i}+\mathrm{j})+\operatorname{LAS}(\mathrm{i})] \div \operatorname{LAS}(\mathrm{j})
$$

\qquad
\qquad
\qquad

- Size method - vertical

$$
\int_{k_{1}}^{k_{2}} x d F(x)+k_{2} \times G\left(k_{2}\right)-k_{1} \times G\left(k_{1}\right)
$$

- Layer method - horizontal
$\int_{k_{1}}^{k_{2}} G(x) d x$

$$
* G(x)=1-F(x)
$$

\qquad

Size Method \& LAS - Layer \qquad
\qquad

$$
\int_{k_{1}}^{k_{2}} x d F(x)+k_{2} \times G\left(k_{2}\right)-k_{1} \times G\left(k_{1}\right)
$$ is equal to

$\left[\int_{0}^{k_{2}} x d F(x)+k_{2} \times G\left(k_{2}\right)\right]-\left[\int_{0}^{k_{1}} x d F(x)+k_{1} \times G\left(k_{1}\right)\right]$

$$
* G(x)=1-F(x)
$$

