

Selection Bias and Predictive Modeling

A Causal Perspective

Herbert I. Weisberg, Ph.D. Correlation Research, Inc.

Typical Insurance Applications

Target: Action: Success:

Claims Investigate Reduce payment
Applicants Guidelines Reject bad risk
Prospects Solicit Acquire prospect
Policyholders Audit Increase premium
Policyholders Service Prevent attrition

Typical Approach

- 1. Measure outcomes in a sample of population
- 2. Build model to predict outcome *value* or *probability*
- 3. Score and rank individuals in sample
- 4. Select cutoff as criterion for selection
- 5. Conduct RCT to evaluate improvement

Predictive Accuracy Outcome

Bad Predict

Good Bad 100 400 Good 1400 600 2000

Sensitivity = 400/1000 = .40Specificity = 1400/1500 = .93Positive Predictive Value (PPV) = 400/500 = .80Negative Predictive Value (NPV) = 1400/2000 = .70

Causal Effect in Selected Subset

Outcome

Condition:

Good Bad 100 400 C 100 400 500

RD = .2 - .8 = -.6

Problem with Usual Approach

- Goal: Maximize improvement
 Ideal: Select only those who would change (counterfactual)

- Model: Targets those normally "Bad" but not necessarily correctable
 Accuracy: Measure (e.g., sensitivity) used is not necessarily appropriate

THEREFORE:

- Selected Subset based on Model may not be optimal (Selection Bias)
 Causal effect may improve performance very little

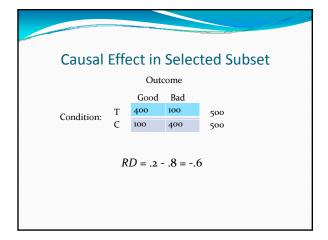
Underlying Causal Model

Normal (Control)

Outcome = Bad

Special Treatment

Outcome = Good


Response Patterns

Treated"Control"Doomed:BadBadCausal:BadGoodPreventive:GoodBadImmune:GoodGood

Distributions of Response Patterns

Response Pattern	<u>Selected</u>	<u>Unselected</u>
Doomed	p_1	q_1
Causal	p_2	q_2
Preventive	p ₃	q_3
Immune	p_4	q_4

	Example	
Response Pattern:	Selected	<u>Unselected</u>
Doomed	100	200
Causal	o	o
Preventive	300	400
Immune	100	1400
Total	500	2000

Causal Effect in Selected Subset					
Outcome					
	Good Bad				
Condition	$T N_T (p_3 + p_4) N_T (p_1 + p_2) N_T$				
Condition	$C N_C(p_2 + p_4) N_C(p_1 + p_3) N_C$				
$RD = p_2 - p_3$					

Causal Effect in Selected Subset
(No "Causals")

Outcome
Good Bad

Condition
$$T N_T (p_3 + p_4) N_T p_1 N_T N_T N_C N_C p_4 N_C (p_1 + p_3) N_C$$
 $RD = -p_3$

	Example	
Response Pattern:	<u>Selected</u>	<u>Unselected</u>
Doomed	300	200
Causal	o	O
Preventive	100	400
Immune	100	1400
Total	500	2000

The Cutting Edge

- 1. Attempt to predict "success" not just outcome
- 2. Uplift (a.k.a. Incremental, True Lift, Net) Modeling
- 3. Derive models under Treatment and Control conditions
- 4. Select targets based on "difference score"

Marketing Research Terminology				
	<u>Treated</u>	"Control"		
"Lost Causes"				
"Do Not Disturbs'	,	SSSSS		
"Persuadables"	SSSSS			
"Sure Things"	sssss	sssss		

Caveats

- 1. Still have issues of selection bias
- 2. Each of two models predicts outcome, not success
- 3. Individual differences are highly variable
- 4. Some applications in insurance may differ