
Very Large Calculation Systems
A specialized solution for the complex needs of advanced knowledge workers

Presented by James Madison

CAS Seminar

March, 2011



James Madison

About James Madison: An information architect with over 

a decade supporting actuaries using the VLCS design

• Experience

– Insurance industry since 1995

– Actuarial systems since 1999

– The Hartford since 2001

• VLCS experience

– Built first VLCS starting in 1999

– Realized it was a pattern when changing companies

– Never saw it documented in industry literature

– Wanted to write something on it since 2003

– CAS call for papers for data processing in 2009

– Published VLCS paper in 2010

– Talking to you in 2011

• Education

– BS in computer science

– MS in computer science

2

Disclaimers

• Only enough actuarial knowledge to be dangerous

• Views not necessarily those of The Hartford or CAS

• Vendor/product references are not endorsements



James Madison

Objective: To help you successfully build and use a VLCS on 

the job, should you need one

3

Objective Summary

Basic design Large data feeds advanced calculations in flexible environments 
with high computing power in enterprise systems.

Specific examples Ratemaking, loss development/reserving, risk analysis.  These 
are just my personal experience.  Many others exist.

The alternative Get strong PCs.  Scrounge data.  Run spreadsheets.  Depend on 
key people.  Hope everyone can find their work in an audit.

When to use it For large problems whose solution needs a combination of IT 
power and stability along with flexibility and experimentation.

Value proposition The combination of computing power and user empowerment is 
unmatched by any other system design, but it has risks.

How to build one Deep knowledge of the business domain is the most critical 
contribution to success.

Technical specifics Fairly advanced technical elements to know and understand so 
the IT work can be matched to the need.



James Madison

Basic Design, Motivation: The pure form of neither 

software applications nor data warehousing seemed to fit

4

Software

Applications

?

Data

Warehousing

Very Large Calculation Systems

Algorithm light

Data heavy

Algorithm heavy

Data light

Algorithm heavy – Ratemaking, loss development, loss reserving, risk

Data heavy – Many years, many subjects, 3
rd

 party data adds, integrated

- Deep history

- Many elements

- Multidimensional

- Integration

- Time series

- Policy writing

- Claim payment

- Web presence

- Customer service

Working with actuaries, 

I kept seeing systems 

that were not quite 

applications, not quite 

data warehousing.

I realized it was a 

pattern of its own.

Ensure your IT staff 

know this pattern and 

have delivered it.



James Madison

Basic Design, Top-Level Architecture: Data sources, 

data warehousing, sandboxing, and computing power in a loop

• Flow order is:

– Operational Systems

– Data Warehouse

– Standard BI Tools

– High-Power Data Access

– Exploration Area

– Calculation Experiments

– Stable Calculations

– Loaded Parameters

– Parameter Interface

– Execution Interface

– Generated Actuarial Data

– Standard BI Tools

– High-Power Data Access

– (Repeats…)

5



James Madison6

Formalization not Revolution: Most people have done 

something like this; my hope is to formalize for efficiency

You probably already do something like a VLCS

You may be using a vendor product that does

Your senior IT staff may have built something like a VLCS

Radical

Revolutionary

“Rocket Science”

Discover natural behavior

Generalize & formalize

Communicate & educate

The Value of Formalization

Basic foundational architecture and component design

Well defined terms & everyone speaking the same language

Faster education for those first encountering the pattern

Objective rationale of benefits, costs, risks and a general plan



James Madison

A Specific Example: Ratemaking for product, pricing, and 

research teams at enterprise scale with local flexibility

• Business Goals

– Enterprise unity

– Speed to market

– Both rating & pricing

– Product support (stable)

– Research support (dynamic)

– Product lifecycle in business

• Solution Elements

– Leading vendor as core

– Vendor core adaptation

– Mature data warehouse

– 3-level sandboxing design

– Extreme engineering

– Experienced VLCS team

– Strong leadership direction

7



James Madison

The Alternative: How  to get along without a VLCS; or, how 

you’re already building/using one on your own and don’t know it

• Easiest VLCS I ever built

– Had run this way for years

– Then ―here, make it a system‖

• Value

– Cheap/easy to start

– Extreme agility & what-if

• Challenges

– Hard to share or version

– Frightening to audit or secure

– Key person dependencies

– Weaker algorithms

– e.g. Parallelogram v. EoE

– Low computing power

– Capacity limits

– e.g. 65K row spreadsheets

8



James Madison

When to Use It, Needs: Watching for the combination of 

flexibility, stability, and power that indicate the VLCS need

9

Criteria Examples Rationale

Long 
History

•3-5 years for auto

•20+ years for asbestos

• In-force is usually easy

•Algorithms across time are hard

Full Book •Risk classes

•Perils by geography

•Reaching credibility levels

•Single policy/account is easy

•Generalizing insights to 
reusable/future rules is hard

Complex 
Algorithms

•Extension of exposures

•Loss development

•Geographic risk density

•Call center data entry or data 
warehousing ETL is easy

•Time variance, trigonometry, 
calculus, data mining are hard

Sandbox / 
What-If

•Experimental ratemaking runs

•Testing hypothetical LDFs

•Specifying known rules is easy

•Finding new insights is hard

Sufficient 
Repetition

•Monthly product/pricing review

•Real-time risk classification

•Cobble it yourself if it’s rare

•Systems repeat reliably & fast 



James Madison

When to Use It, Resources: Knowing whether you have 

the basic resources needed to succeed in building a VLCS

10

Criteria Examples Rationale

Power 
Users

•Comfortable coding themselves

•Many automated tools already

•The stronger the actuary, the 
smaller the gap to IT building it

A Data 
Warehouse

•Many source already together

• Integration headaches resolved

•Collecting sources and unifying 
them is very time consuming; do 
not attempt simultaneously

Hardware 
Power

•Many multi-core CPUs

•Commodity servers as a grid

•Once all else is optimized, raw 
power will still matter

Project Mgt 
Skill

•PM who has built a VLCS

•Experience with ―Agile‖ SDLC

• Iterative, incremental build with 
involved business community is 
needed but often not the norm

Enterprise 
Will Power

•Sustained multi-year effort

•Analytics-aware funding model

•Complete system will require 
several years to fully construct

•A VLCS is a ―back room‖ system, 
so harder to allocate business 
benefit



James Madison11

Value Proposition: The pros and cons of using a VLCS 

compared to applications, data warehousing, or doing it yourself

Pro/Con Application Data Warehouse Do-It-Yourself

Flexibility Same More Less

Self-Service Same More Less

History More Same More

Algorithm Power Same More More

Computing Power More Same More

Auditability Same Same More

Formalization Same Same More

Vendor Products Less Less Less

Cost More More More

Risk More More More

Complexity More More More

Manageability Same Same More

Read as: ―A VLCS has {cell} {row pro/con} than {column header}‖



James Madison

How to Build One, Perspective: You know the 

technology domain better than IT knows the actuarial domain

12

S
k
ill

 i
n

 t
h

e
 I
n

v
e

rs
e

 D
o

m
a

in

Business Domain Complexity

Actuarial logic is 

challenging for IT staffBusiness Person

Technology Person

IT staff can 

easily do call 

center screens

Most actuaries 

can code 

spreadsheets,  

SQL, etc, and 

say, “Do This!” 

Most actuaries are 

quite tech-savvy

(E.g. web sites are easy, actuarial systems are hard)

(E
.g

. 
IT

 k
n

o
w

in
g

 a
c
tu

a
ri
a

l 
s
c
ie

n
c
e

, 
a

c
tu

a
ri
e

s
 k

n
o

w
in

g
 t
e

c
h

n
o

lo
g

y
)



James Madison

How to Build One, Contributions: The assistance you 

can provide to ensure that you get the VLCS you need

13

Action Rationale

Code it yourself Build what you need into spreadsheets or databases, hand 
over, say ―Make it do this!‖

Use IT tools As you code, use sanctioned IT tools if you can.  Maximizes 
knowledge transfer; minimizes cost.

Say how not just 
what

Traditional IT asks for the inverse.  Spell out how—you will 
often be providing a big head start.

Clarify flexibility 
versus stability

Making flexibility systematic is not a common IT skill.  Spell out 
clearly where you need it and where you don’t.

Decompose & 
prioritize

Make units of delivered functionality small and ensure 
execution in priority order.

Demand ―Agile‖ 
SDLC

Use iterative, light-weight, collaborative development.  Internet 
search on ―agile software development‖ for specifics.

Ask ―how hard is 
that?‖

Not just in a VLCS, but with any software development, this is 
a powerful way to find confused IT people and help them.

Educate on 
algorithms

Don’t just ―do specs.‖  Teach IT actuarial science.  E.g. ―Basic 
Ratemaking‖ by CAS—great work!



James Madison

Technical Specifics: Moderately advanced technical and 

design elements to watch for and know the value of

14

Feature Description Value

Parameters User guides scope and input of job Flexibility, what-if analysis

Parallelism Many jobs run at once Higher performance

Partitioning Only needed data is retrieved Higher performance

Profiling See where run time is spent; per line Higher performance

Cluster/grid Many low-cost servers together Lower cost

Networking Server connections are fast Higher performance

Self-service Users invoke VLCS on demand Flexibility, what-if analysis

Job priority Jobs have classes and order Enterprise management

Queuing Maximum job limits are used Consistent performance

Monitoring Users can see system load Consistent performance

Alerting System notifies user when done Enterprise management

Archiving Any system run can be tracked Auditing & compliance

Sharing Users can see and reuse others’ jobs Non-redundancy, performance



James Madison15

Summary

• Paper from which this presentation is drawn:

– http://www.casact.org/pubs/forum/10spforum/Madison.pdf

• Contact information

– James.Madison (at) TheHartford.com

• Q&A

– Any questions?

http://www.casact.org/pubs/forum/10spforum/Madison.pdf

