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There are several theoretical stumbling blocks to 
overcome to develop rating relativities

Separating the Signal from the Noise

Not double counting Correlated Exposures

Addressing Variable Interactions
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1.  Insurance is inherently a stochastic, or 
random, process

Note: the presence of noise 
along with our signal is 
the basic reason 
credibility was conceived.  
Due to the presence of 
noise, we don’t fully 
believe our point 
estimate.

Good multivariate methods 
provide credibility 
statistics for estimates.

Variation

Any set of data you examine will contain:

systematic variation - signal, true relationships
random variation - noise 

Systematic 
Variation

Random

Filtering the Signal from the Noise requires credibility 
estimates based on measuring Process Variance

For example:  
A coin is tossed 10 times and 
only lands on heads 4 times 
(40%).  

Over last three years territory 
101 has a fire frequency of 
0.005 while territory 102 has a 
fire frequency of 0.007.

To answer these questions we need a measure of the variability in each processes

Is the coin biased?
Can we say that territory 102 
is truly more risky than 101?

2.  The ‘signal’ – once detected – is usually 
made up of inter-related effects

Random 
Variation

Correlations
Often, distributional biases in exposures exist in the data and 
cause results to be linked

Driver Age

Credit

Sex 
Marital 
Youth

Vehicle
TerritoryCal Yr

Possible Example:
If all Youth live the City 
and all Adults live in 
Rural areas, then Age 
and Territory effects will 
be correlated
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Random 
Variation

Driver Age

Credit

Sex 
Marital 
Youth

Vehicle
TerritoryCal Yr

3.  The ‘signal’ is usually made up of inter-related 
effects
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Interactions

Possible Example:
Youngsters with muscle cars 
are more likely to drive them 
often and fast while senior 
citizens with muscle cars are 
more likely to leave them in 
the garage and polish them: 
Horsepower and Driver Age 
interact
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This occurs when two variable’s indicated factors are correlated; 
hence the outcome of one depends on the level of the other

Summary on Theoretical issues

Correlations between two variables’ exposure distributions cause the 
indications to be linked.  This is NOT an interaction; it is an important effect 
and multivariate techniques can resolve this problem.

Interactions are correlations between two variables’ indicated factors:  
the indicated factors behave differently across levels of a 
secondary variable.  

It is perfectly possible for two variables to be correlated but have no 
interaction, or for two variables to have an interaction but not be 
correlated.

Processes Variability measures allow us to gauge the strength of the 
‘signal’ or indicated factor estimates. 

Total
Losses: $400,000

Exposures: 4,000

Pure Premium:   $100

One-way Analysis Techniques and their 
Shortfalls

Mature
Losses: $133,333

Exposures: 2,000

Pure Premium:   $67

Relativity:          1.00

Youthful
Losses: $266,667

Exposures: 2,000

Pure Premium:   $133

Relativity:          2.00

Pure Premium Example
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Problem: One-way Pure Premium analysis is 
blind to the rest of the class plan

Total
Losses: $400,000

Exposures: 4,000

Pure Premium:   $100

No Points
Losses: $150,000
Exposures: 2,000
Pure Premium:   $75
Relativity:          1.00

Driver With Points
Losses: $250,000
Exposures: 2,000
Pure Premium:   $125
Relativity:          1.67

Total
Losses: $400,000

Exposures: 4,000

Pure Premium:   $100

No Points
Losses: $150,000
Exposures: 2,000
Pure Premium:   $75
Relativity:          1.00

Driver With Points
Losses: $250,000
Exposures: 2,000
Pure Premium:   $125
Relativity:          1.67

Should a Young Driver with Points be charged 3.33 
times the rate of a clean Adult  (2.00 * 1.67) ?

Youthful
Mature

Points

No Points
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Should a Young Driver with Points be charged 3.33 
times the rate of a clean Adult  (2.00 * 1.67) ?

Yes – If Pointed drivers are evenly
spread through Youth and Matures.  
Then no correlation exists between 
Pointed vs. Youthful exposures 

Youthful
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Points

No Points
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Biased Distribution 

No – If Young drivers are more (or less)

likely to have Points.  Then a correlation 
will exist between the exposures, and one-
way analysis will be distorted by the bias.
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Example Detail
Exposures  

Youth Mature Total
No Points 400 1,600 2,000
Points 1,600 400 2,000
Total 2,000 2,000 4,000

Losses  
Youth Mature Total

No Points 66,667 83,333 150,000
Points 200,000 50,000 250,000
Total 266,667 133,333 400,000

Pure Premium  
Youth Mature Total

No Points 167 52 75
Points 125 125 125
Total 133 67 100

One-Way Relativity Points
Youth Mature One-way

No Points 2.00 1.00 1.00
Points 3.33 1.67 1.67
Age One-way 2.00 1.00

Two-Way Relativity Points
Youth Mature One-way

No Points 3.20 1.00 1.00
Points 2.40 2.40 1.67
Age One-way 2.00 1.00

Exposures
Youth Mature

No Points 20% 80%
Points 80% 20%
Total 100% 100%

Losses
Youth Mature

No Points 25% 62%
Points 75% 38%
Total 100% 100%

Pure Premium
Youth Mature

No Points 1.25 0.78
Points 0.94 1.88
Total 1.00 1.00

There are several problems with one-
way analysis

Usually does not provide a measure of 

significance

Can overlook Exposure Correlations

Not sensitive to Factor Interactions

Multivariate Techniques can overcome 
these shortfalls

Multi-way Pure Premium

Loss Ratio

Minimum Bias

Multi Linear Regression

Generalized Linear Regression
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One-way Loss Ratios are inherently Multivariate: 
the premium takes into account the rest of the 
class plan

For example, if you look at the relative loss ratios between Youthful and 
Adult drivers, the premium within that loss ratio will reflect the 
current factors for Points.

Because Youthfuls have a higher percentage of Points, their average 
premium will be higher due to the higher Points factors.  This will 
lower the loss ratio.  In this way we don’t “double count” the effect of 
Points and Age.

Side note…what if Points didn’t exist? Appropriate Age factors would change.

Youth LR =  73%      
Premium 

Loss 
   
∑

∑=   
...  Rel Rel Rel  Rate) (Base

Loss
     

TerrPointsAge ⋅⋅⋅
=

∑
∑

One-way Loss Ratio analysis has a significant 
shortcoming 

It assumes the rating plan’s other factors are accurate.  

e.g. suppose you want to examine the adequacy of both your Age and Points 
curves.  When you look at loss ratios by Age, you are assuming your current 
Points factors are good and vice versa for when you look at loss ratios by 
Points.

  
...  Rel Rel Rel  Rate) (Base

Loss
     

TerrPointsAge ⋅⋅⋅
=

∑
∑

This assumption is often not appropriate, as is the case when there are 
multiple changes which need to be made.

Formula representation of Indicated Pure Prem

Youthful Adult Total Formula Equivalent
Points 100 x A1 x P1 100 x A2 x P1 600 = (100 x A1 x P1) + (100 x A2 x P1)
No Points 100 x A1 x P2 100 x A2 x P2 400 = (100 x A1 x P2) + (100 x A2 x P2)

Minimum Bias Techniques overcome several 
common short comings

Min Bias is an iterative approach for reducing the 
error between observed and indicated relativities 

Optimizes the relativities for multiple changes

Can use either Pure Premiums or Loss Ratios

Calculates relativities which minimize the error with observed relativities based 
on a selected error (Bias) function

The Bias Function determines how the error which can’t be removed is then 
distributed

Iterative technique - when the equations converge you have the optimal solution
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Example 1:  Use the Minimum Bias procedure to find 
the optimal relativities for Age and Points

Indicated Relativity
Youthful Adult

Points 2.00 x 1.67 1.00 x 1.67
No Points 2.00 x 1.00 1.00 x 1.00

Youthful Adult
Points 3.33 1.67
No Points 2.00 1.00

Indicated Pure Premium
Youthful Adult

Points 333 167
No Points 200 100

Error (Indication vs. Actual)

Youthful Adult
Points 0 0
No Points 0 0

Perfect Match – no need to use Minimum Bias Approach

Observed Pure Premiums

Youth Adult Total Rel
Points 333 167 500 1.67
No Points 200 100 300 1.00

Total 533 267
Rel 2.00 1.00

Example 2:  Use the Minimum Bias procedure to find 
the optimal relativities for Age and Points

Observed Pure Premiums

Youthful Adult Total Rel
Points 400 200 600 1.50 P1
No Points 300 100 400 1.00 P2

Total 700 300
Rel 2.33 1.00

A1 A2

Indicated Pure Premium

Youthful Adult
Points 350 150
No Points 233 100

Error (Indication vs. Actual)

Youthful Adult
Points -50 -50
No Points -67 0

Indicated Relativity

Youthful Adult
Points 2.33 x 1.50 1.00 x 1.50
No Points 2.33 x 1.00 1.00 x 1.00

Points 3.50 1.50
No Points 2.33 1.00

Imperfect Match - use Minimum Bias Approach

Which Bias Function to Chose?

Balance Principle
Ensures that the total error in each class is zero

Least Squares
Minimizes the total error, using the Sum of Squared errors 

(nominal values)

Chi Squared
Minimizes the total error, using the Sum of Squared errors 

(as a Percent of expected)
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Example 2:  ‘Balance Principle’ Bias Function  (1st Iteration)
Balance Principle ensures the total error in each class dimension is zero

Assumed Initial Relativity for Age:

Symbol Initial Value
Youthful A1 2.333
Adult A2 1.000

Formula representation of Indicated Pure Prem

Youthful Adult Total Formula Equivalent
Points 100 x A1 x P1 100 x A2 x P1 600 = (100 x A1 x P1) + (100 x A2 x P1)
No Points 100 x A1 x P2 100 x A2 x P2 400 = (100 x A1 x P2) + (100 x A2 x P2)

1st Iteration Solution for Points Variables

Symbol Solved Value Rebased
Points P1 1.8000 1.5000
No Points P2 1.2000 1.0000

600 = (100 x 2.33 x P1) + (100 x 1.00 x P1)
400 = (100 x 2.33 x P2) + (100 x 1.00 x P2)

Observed Pure Premiums

Youthful Adult Total Rel
Points 400 200 600 P1
No Points 300 100 400 P2

Total 700 300
Rel A1 A2

Next we substitute in the  solved 
values for ‘Points’ to get new 
values for ‘Age’

Relativity from Prior Iteration

Symbol Value
Points P1 1.500
No Points P2 1.000

Youthful Adult
Points 100 x A1 x P1 100 x A2 x P1
No Points 100 x A1 x P2 100 x A2 x P2

700 300
700 = (100 x A1 x 1.50) + (100 x A1 x 1.00)
300 = (100 x A2 x 1.50) + (100 x A2 x 1.00)

700 = (100 x A1 x P1) + (100 x A1 x P2)
300 = (100 x A2 x P1) + (100 x A2 x P2)

1st Iteration Solution for Age Variables

Symbol Solved Value Rebased
Youth A1 2.8000 2.3333
Adult A2 1.2000 1.0000

Observed Pure Premiums

Youthful Adult Total Rel
Points 400 200 600 P1
No Points 300 100 400 P2

Total 700 300
Rel A1 A2

1st Iter.

Points 1.5000
No Points 1.0000

Youthful 2.3333
Adult 1.0000

2nd Iter.

1.5000
1.0000

2.3333
1.0000

Convergence

Example 2:  ‘Balance Principle’ Bias Function  (1st Iteration)
Balance Principle ensures the total error in each class dimension is zero

Next we substitute in the  solved 
values for ‘Points’ to get new 
values for ‘Age’

Immediate convergence not always the case

Method can be extended to many dimensions

Possible to code the calculation directly into a 
spreadsheet  (‘short cut’ formulas exist)

Can use with multiplicative or additive pricing models

Could use Least Squares, Chi Squared, or Maximum 
likelihood approaches instead

For more information see CAS publication:

The Minimum Bias Procedure,  A Practioner’s Guide, by Feldblum and Brosius

Example 2 Notes:
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Minimum Bias techniques still have 
limitations

These techniques only give Point Estimates, yet we know all 
data contains both signal and noise.  

Minimum bias techniques provide no 
method for quantifying the extent and 
impact of the noise.

Classical Statistics Techniques provide a 
method for quantifying noise vs. signal

Dependent
Variable

=    Signal   +  NoiseGeneral Form:

Simple Linear Regression:                y     =  ( β1x + β0)    +   ε

Multiple Linear Regression:  y      =  ( β1x1 + β2x2 … + βnxn + β0)   
+  ε

MPG    =  (0.15 • Model year + 25)  + ε

MPG  = (-0.10 • Wgt  +  0.20 • Model year + 40)  
+ ε

With Insurance applications we use the rating 
factors as the Dimensions in the regression

Observed Pure Premiums or Loss Ratios are used to 
determine the parameter values, or ‘fit’ the model

Usually Categorical variables are used instead of 
Quantitative variables

Specifying a Categorical model differs from a 
Quantitative model:  

Categorical: each Level of a Variable has it’s own parameter 

Quantitative:  each Variable has a ‘slope’ for all levels within it
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We specify a Categorical model so each ‘cell’ is 
uniquely represented using ‘dummy variables’

7,5005,000Older

4,5001,500Younger

PointedCleanLoss
This two-dimensional example is  

formulated as…

y   = βYouthx1 +  βAdultx2 +  βCleanx3  +  ε

The x’s take on values of 0 or 1 
The default is a ‘Pointed’ driver

7,500  =  βYouth·0 +  βAdult·1   +  βClean·0 + ε

1,500 =  βYouth·1   +  βAdult·0 +  βClean·1 + ε

5,000  =  βYouth·0 +  βAdult·1   +  βClean·1 + ε

4,500 = βYouth·1   +  βAdult·0 +  βClean·0 + ε

Solve the Parameters (β) by substituting in the observed 
Pure Premiums

4,500 =  β1·1   +  β2·0 +  β3·0 +  ε
1,500 =  β1·1   +  β2·0 +  β3·1 +  ε
7,500  =  β1·0 +  β2·1   +  β3·0 +  ε
5,000 =  β1·0 +  β2·1   +  β3·1 +  ε

To find an answer, we need a criterion for what is the “best” answer.  

A typical approach is to minimize the sum of the squared errors (SSE).

1. SSE = ε1
2 + ε2

2 + ε3
2 + ε4

2 + …. where ε = (observed – expected)

2. Minimize by taking the derivative with respect to beta:  δSSE/δβi

3. Set the derivative equal to zero and solve for βi :   δSSE/δβi =  0

Usually the system of equations will not have a fit that perfectly explains all 
variation.   What fit will be best at minimizing the error ?

7,5005,000Older

4,5001,500Younger

PointedCleanLoss

Solve the Parameters (β) by substituting in the observed 
Pure Premiums and Minimizing the SSE

4,500 =  β1·1   +  β2·0 +  β3·0 +  ε
1,500 =  β1·1   +  β2·0 +  β3·1 +  ε
7,500  =  β1·0 +  β2·1   +  β3·0 +  ε
5,000 =  β1·0 +  β2·1   +  β3·1 +  ε 7,5005,000Older

4,5001,500Younger

PointedCleanLoss

= (4,500 - β1)2   +  (1,500 - β1 - β3 )2 +  (7,500 - β2)2 +  (5,000 - β2 - β3)2

   )(   SSE 2∑=
i

ε ∑ −=
i

ii yy 2)ˆ(      

δSSE/δβ1 =  2·(4,500 - β1)·(-1) +    2·(1,500 - β1 - β3 )·(-1)   +   0    +    0  

δSSE/δβ2 =   0   +   0    +  2·(7,500 - β2)·(-1)     +    2·(5,000 - β2 - β3)·(-1)

δSSE/δβ3 =   0   +   2·(1,500 - β1 - β3 )·(-1)   +   0  +  2·(5,000 - β2 - β3)·(-1) 

set
= 0

set
= 0

set
= 0
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Solve the Parameters (β) by substituting in the observed 
Pure Premiums and Minimizing the SSE

4,500 =  β1·1   +  β2·0 +  β3·0 +  ε
1,500 =  β1·1   +  β2·0 +  β3·1 +  ε
7,500  =  β1·0 +  β2·1   +  β3·0 +  ε
5,000 =  β1·0 +  β2·1   +  β3·1 +  ε 7,5005,000Older

4,5001,500Younger

PointedCleanLoss

2·β1 + β3 = 6,000  

2·β2 + β3 = 12,500   

β1 + β2 +  2·β3 = 6,500 

β1 = 4,375

β2 = 7,625 

β3 = -2,750

Finding the optimal answer for a multi-linear 
regression boils down to systems of equations

Expressing a System of Equations is more conveniently 
done via Matrix Notation and Linear Algebra

…Especially as the number of variables and observations 
get more numerous

4,500 =  β1·1   +  β2·0 +  β3·0 +  ε
1,500 =  β1·1   +  β2·0 +  β3·1 +  ε
7,500  =  β1·0 +  β2·1   +  β3·0 +  ε
5,000 =  β1·0 +  β2·1   +  β3·1 +  ε
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Matrix notation allows systems of equations to 
be more elegantly represented

Y =   X.β +   ε Y = signal  +  noise

4 obs   

Y
outh

A
dult

C
lean

solving for these

4,500 =    β1·1   +  β2·0 +  β3·0 +  ε
1,500 =    β1·1   +  β2·0 +  β3·1 +  ε
7,500    =    β1·0 +  β2·1   +  β3·0 +  ε
5,000 =    β1·0 +  β2·1   +  β3·1 +  ε
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We think of the Linear Model as having Three 
Parts:

Y =   X.β +  ε

Link function:

Random Component:

Systematic Component:

The Observations being predicted

The Predictor variables, also notated as η  (‘eta’)

Defines the relationship between the predictors 
and the observations

Y =   X.β +  ε

Link function:

Random Component:

Systematic Component:
i.e.  Predictors are related as a linear combination:

η =   β1x1 + β2x2 + β3x3…

Observations are independent and come 
from a normal distribution with a common
variance.

Predictor variables are related as a Linear sum, η

The expected value of Y is equal to η  
Ε[Y] =  η

Linear Modeling is subject to some assumptions 
that may not fit Insurance applications well

Y =   X.β +  ε

Random Component: Observations are independent and come
from a normal distribution with a common
variance.

For each variable in our model, there is an 
expected mean and randomness about that 
mean.  The average loss for “younger 
drivers” may be $100, but why should the 
distribution of individual observations be 
Normal about this?  

In fact, normal distributions extend to negative 
numbers.  What’s a negative loss?

Linear Modeling is subject to some assumptions 
that may not fit Insurance applications well
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Y =   X.β +  ε

Random Component:

Linear Modeling is subject to some assumptions 
that may not fit Insurance applications well

Observations are independent and come 
from a normal distribution with a common
variance.

Why should the distribution of losses for 25K 
limits have the same variance as the 
distribution of losses for 100K limits?  

The 25K limits, with a low mean, would likely 
have less variance than 100K limits.

Y =   X.β +  ε

Systematic Component:

E[Y]  =    β1x1 + β2x2 + β3x3…

The Predictor variables are a Linear sum, η

Link function: The expected value of Y is equal to η  

This pair assumes that Y is predicted by the additive
combination of the X variables.  

However, most insurance effects tend to combine 
multiplicatively.

η =   β1x1 + β2x2 + β3x3…

Linear Modeling is subject to some assumptions 
that may not fit Insurance applications well

E[Y]  =   (β1x1) * (β2x2 ) * (β3x3) * …

Round up of Multi-variate approaches and their 
limitations

One-way Pure Premium:

Loss Ratio:

Minimum Bias:

Multi Linear Regression:

(MLR)

No measure of Significance (Point estimate only)
Can overlook Exposure Correlations
Not sensitive to Factor Interactions

Is Sensitive to correlations 
But assumes all other pricing factors accurate: 
can’t use if changing multiple structures

Provides Point estimates only

Does accommodate multiple structure changes
But only Provides Point estimates 

Does accommodate multiple structure changes
Provides Confidence Ranges & Significance tests
But requires assumptions that don’t fit insurance 
data

MatureYouthful

  
...  Rel Rel Rel  Rate) (Base

Loss
     

TerrPointsAge ⋅⋅⋅
=

∑
∑

Youthful Adult
Points 100 x A1 x P1 100 x A2 x P1
No Points 100 x A1 x P2 100 x A2 x P2
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Generalized Linear Models use more lenient 
assumptions

No Change here:    η =   β1x1 + β2x2 + β3x3…

Link function:

Random Component:

Systematic Component:

Observations are independent and come 
from a normal distribution with a common
variance.

Predictor variables are related as a Linear sum, η

The expected value of Y is equal to η  
Ε[Y] =  η

Observations are independent, but come 
from one of the family of Exponential 
Distributions  (Normal, Poisson, Gamma,…)

now the variance can change with the mean and 
negative values can be prohibited

The expected value of Y is equal to a transformation 
of η:   g( Ε[Y] ) = η         or E[Y]  = g-1(η)

A log link results in a multiplicative relationship between the X’s

log-link:  g(x) = ln(x)   g( E[Y] ) = η = ln( E[Y] )    
E[Y] = e(η) =   e(x1β1+x2β2) =   e(x1β1) e(x2β2)

Y =  g-1(X.β) + ε
<<<<    Old Assumptions   >>>>

First Step is choosing a Link function. 

You must select a Distributional Family that mimics your data.

Then you need to decide on your design matrix (which variables to 
include in your model and how to combine them)?  

This process is best done through an evaluative, trial and error
process that combines both statistics and judgment.

Generalized Linear Modeling assumptions are 
better suited for Insurance applications

Y =  g-1(X.β) + ε

GLM output can show Predictions vs. Error, 
Correlated effects, and Interactions
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In summary of GLMs …

As a statistical model, GLMs allow us to have some measure of 
the Noise as well as the Signal.

GLMs assumptions are flexible enough to reasonably fit real-world 
insurance situations.

It turns out that many Minimum Bias techniques, all One-way, 
and all Linear Regression approaches are just special forms of 
GLMs.

GLMs are multivariate and automatically solve the “double 
counting” problem presented by correlated variables.  They also 
allow for many model forms, including interactions.

GLM’s are fairly standard in the industry but there 
are other, non-linear multivariate techniques as well

Decision Trees (CART, C5, CHAID, etc.)

Neural Networks

Polynomial Networks

Clustering

Kernels

Others…


