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Antitrust Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and 
spirit of the antitrust laws.  Seminars conducted under the auspices of the CAS 
are designed solely to provide a forum for the expression of various points of 
view on topics described in the programs or agendas for such meetings.  

Under no circumstances shall CAS seminars be used as a means for competing 
companies or firms to reach any understanding – expressed or implied – that 
restricts competition or in any way impairs the ability of members to exercise 
independent business judgment regarding matters affecting competition.  

It is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to violate 
these laws, and to adhere in every respect to the CAS antitrust compliance 
policy.
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What is the Problem?

• Insurance data is often incomplete, inconsistently coded, and 
generally “dirty”. 

• In particular:  when building a predictive model – or performing 
any type of statistical analysis – one must decide how to handle 
observations containing missing information.

• Key considerations
– Potential losses of predictive power
– Potentially biased parameter estimates
– “Overly optimistic” measures of confidence in parameter estimates
– Implementation 
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Perspective

• Many commonly used techniques for handling missing data are 
considered “unacceptable” in textbook presentations.

• Twofold goal:
• Better understand why common techniques are considered 

“unacceptable”.
• Better understand the practical advantages and disadvantages of various 

methods.

• Our goal here is not to advocate one approach above others.  
• Practical decisions are likely to be context-dependent.
• We will give a survey - no attempt at completeness! 

• “The only really good solution to the missing data problem is 
not to have any.” --Paul Allison
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Topics

Maximum Likelihood

Multiple Imputation

Expectation Maximization

Case Studies

Traditional Methods

Background Concepts



Background Concepts

Missing Completely At Random
Missing At Random
Not Missing At Random
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Missing Completely at Random [MCAR]

• Prob(Y is missing | X,Y) = Prob(Y is missing) 

• Missingness of Y depends neither on the value of Y nor on the 
values of any other variables in one’s data.

• There is rhyme or reason to why Y is missing.
• The subpopulation for which Y is not missing is a random sample of the 

full population.

• This is the least bad type of “missingness”.

• Unfortunately MCAR is also a fairly strong assumption.
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Missing at Random [MAR]

• Prob(Y is missing | X,Y) = Prob(Y is missing | X) 

• Example:
– Prob(credit_m | age,credit) = Prob(credit_m | age)

• Probability of missing credit is dependent on age…

• …but within a given age, the probability of missing credit is not
dependent on the value of credit. 

• More realistic than MCAR
• Note:  we can test whether (Y is missing) depends on X
• But we can’t test whether   (Y is missing) depends on Y
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Ignorability

• Ignorable:  the parameters to be estimated are independent of 
the parameters governing the missing data mechanism.

• Ignorable example:  a tape containing the credit score for a 
random sample of historical policies was destroyed.

• Non-ignorable example:  a tape containing the credit score for 
premier-tier policies was destroyed.

• If ignorability is violated than textbook methods for handing 
missing data don’t apply.

 For the purpose of this presentation we will ignore ignorability.
(i.e. assume ignorability is satisfied)
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Not Missing At Random (aka Selection Bias)

• Prob(Y is missing | X,Y) ≠ Prob(Y is missing | X) 

• Example:  people with poor credit are more likely to have “thin 
files” or missing credit reports altogether.

• i.e. the probability of credit being missing depends on the value 
of credit itself.

• In other words, the sub-sample of policies for which credit is 
not missing is a “biased sample” of the overall population.

• The probability of missing credit is not independent of the quality of a 
policyholder’s credit.
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In Summary

• Missing Completely at Random [MCAR]
• Prob(Y is missing | X,Y) = Prob(Y is missing)
• The missingness of Y is independent of everything in your data.
• I.e. no particular reason why a given observation is missing.
• I.e. the observations with non-missing Y are a random sample of the 

total population.

• Missing at Random [MAR]
• Prob(Y is missing | X,Y) = Prob(Y is missing | X)
• The probability that Y is missing is independent of the value of Y, 

conditioned on the other variables X in your data.

• Not Missing at Random [NMAR]
• Prob(Y is missing | X,Y) ≠ Prob(Y is missing | X)
• The probability that Y is missing is dependent on the value of Y itself.
• i.e. we face selection bias:  the observations for which Y is observed are 

a biased sample of the total population.
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What to Do?

• MCAR and MAR:  broadly speaking, 2 types of options
– Traditional methods

• Delete observations with missing data
• Add dummy variables to flag missing observations
• Impute missing values

– Newer methods
• Maximum likelihood, facilitated by the EM algorithm
• Multiple Imputation [MI]

• NMAR
– “Off the shelf” textbook methods no longer apply
– We need to model the process that generated missing data
– i.e. we need to account for selection bias in our model
– Classic example:  the Heckman adjustment



Traditional Methods

Listwise deletion
Missing value dummy variables
Simple imputation
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Traditional Method #1:  Complete Case Analysis

• The most obvious strategy for handling missing values is to 
simply disregard all observations for which any variable is 
missing.

• This is the default option in SAS and some R functions

• Advantages
• Simple
• Works with any statistical procedure
• MCAR  unbiased estimates

• Disadvantages
• Inefficient use of data
• Will lead to biased results if data isn’t MAR
• In an extreme case, you could be left with (virtually) no data
• Imagine a scenario in which X1 is missing on the odd observations and 

X2 is missing on the even observations.  
 you’d throw out all of your data



14Copyright © 2009 Deloitte Development LLC.  All rights reserved.

Traditional Method #2:  Missing Value Dummies

• For each variable with missing observations, create a separate 
{0,1} dummy variable indicating the presence of missing data.

• Notation:  X_m = 1 iff X is missing

• Example:  Suppose we are regressing claim frequency on AGE, 
CREDIT, and TENURE

• Suppose CREDIT is MCAR 50% of the time
• (e.g. we wanted to save money by ordering credit on only half the 

population)
• If we include CREDIT_m as well as CREDIT in the model, we can recode 

missing values of CREDIT to any number.
• intuition:  including CREDIT_m means that the model contains a full 

degree of freedom to accommodate missing values of CREDIT.
• CREDIT_m adjusts to the value used to impute missing values of CREDIT.

 CREDIT is unaffected.

• Big problem:  in general this leads to biased  estimates!
• We will come back to this
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Traditional Method #3:  Mean Imputation

• Marginal Mean Imputation
• Impute missing values of X with the mean or median value of the non-

missing values of X.
• The most commonly used technique

• Pro:  simple, intuitive

• Con:  produces potentially biased parameter estimates

• Con:  standard error estimates are often biased downward
• Why:  a regression model can’t tell the difference between a dataset that 

has a large number of values bunched up at the mean and a dataset for 
which missing values have been replaced with the mean.

• Mean-imputation gives the appearance of having more information about
X than we really have.

• Textbook advice:  avoid this method.
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Simulated Example

• Use of mean imputation and dummy variables are fairly 
widespread, so let’s explore the potential pitfalls.

• Simulation:  simulate 10,000 draws from a bivariate normal 
distribution.

• We can vary  to understand the effect of multicollinearity

• Next let: Y = 3 + 5*X + 7*Z +  where  ~ N(0,1)

• Finally assign missing values to a randomly selected half of the
values of Z.

• Values of Z are Missing Completely at random [MCAR]
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Simulate 1000 Data Points

• Let’s assume that
X,Z  cor(X,Z) = 0.4

• Illustrate 3 methods
• Listwise deletion
• Dummy variable
• Mean imputation
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Live Demo:  Common Ways of Handling Missing Data

• We will select a random 50% of the Z values in our data and 
blank them out.

• These values of Z are “missing completely at random” [MCAR]
• The most innocuous form of missingness

• Next illustrate the effects of traditional methods #1,2,3
• Method1: Y ~ X + Z  (on complete cases)
• Method2: Y ~ X + Z + Z.m (on all cases)
• Method3: Y ~ X + Z* (on all cases)

Where Z* = mean(Z) if missing; Z*=Z otherwise 

Only Method #1 
yields unbiased 
estimates



19Copyright © 2009 Deloitte Development LLC.  All rights reserved.

From Whence the Bias?

• Here is a clue:  after we recode the missing values of Z to the 
mean value of Z, the correlation structure of the data is 
changed.

• Original data:
(Before missing data was introduced)

• After deletion of missing cases:

• After mean imputation:

• Mean imputation is an inherently “univariate” activity.
• It does not preserve the correlation structure of the data.
• Regression parameters are derived from these correlations.
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Where Do We Stand?

• The traditional methods of dummy variable indicators and 
mean imputation lead to biased parameters even in the “least 
bad” case of data that is missing completely at random 
[MCAR].

• But – consider how serious the bias is likely to be and how damaging 
the bias would be to your business outcome.

• Listwise deletion is better behaved but still no panacea
• Leads to a loss of “power” (higher standard errors).
• In many practical situations would cause you to throw away a majority 

of your data.
• Assumes that the missing cases are an unbiased sample of the total 

population.

 It makes sense to explore other strategies for handling 
missing data.
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No Mean Feat

• Mean imputation and the dummy variable techniques are 
“myopic”:  they impute missing values without regard to how 
this affects the correlation structure of the data.

• More advanced methods take the opposite approach.

• They attempt to impute missing values in a way that 
preserves the correlation structure of the data.

• Maximum Likelihood
• Expectation-Maximization Algorithm
• Multiple Imputation



Maximum Likelihood Methods

Monotonicity 
EM Algorithm
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Maximum Likelihood Refresher

• Remember what maximum likelihood means. 

• Suppose our data {y,…,yn} is iid distributed with pdf f(yi|).

• Likelihood function:

• We find the value of  that maximizes L(): MLE

• Properties of MLE:
• Consistent: MLE is approximately unbiased in large samples
• Asymptotically efficient: In the limit as n the standard error of 

MLE is at least as small as s.e. for any other consistent estimator.
• Asymptotically normal: In the limit as n MLE has an 

approximately normal distribution.
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Maximum Likelihood With Missing Data

• Illustration:  suppose that we have n complete observations of 
y but observations m+1, m+2, …, n are missing for x.

y1 y2… ym ym+1… yn

x1 x2… xm NA… NA

• Basic idea:  when setting up the likelihood function, integrate 
across the missing values of x:
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Monotnicity

• The likelihood “factorization” described on the previous page 
only works if the data’s “missingness” follows a monotonic 
pattern.

• Example:

• This limits the practical applicability of the maximum likelihood 
approach.

monotonic non-monotonic
obs X1 X2 X3 X4 obs X1 X2 X3 X4
1 -56 122 -107 43 1 -56 122 . .
2 -23 36 -22 -30 2 . . -22 -30
3 156 40 -103 . 3 156 40 -103 90
4 7 11 -73 . 4 . . . .
5 13 -56 . . 5 13 -56 -63 .
6 172 179 . . 6 172 179 . 69
7 46 50 . . 7 . . . .
8 -127 . . . 8 . -197 . .
9 -69 . . . 9 . 70 -114 .
10 -45 . . . 10 -45 . 125 -38

Monotonic:
data are 
missing for Xi
 they are 
also missing 
for Xj with j>i.
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The Expectation-Maximization Algorithm

• The EM algorithm:  an approach to maximum likelihood 
estimation.

• As with maximum likelihood we need to make a distributional 
assumption about our data.

• e.g.:   (X1, X2, X3, X4) ~ MVN(, )

• Failure of monotonicity  hard to set up and maximize the 
likelihood function.

• EM:  iterative 2-step process for approximating the MLE.
• Expectation step
• Maximization step
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How EM Works

• Step 0:  make an initial guess at the parameters  of your 
model for the data.

• Expectation:  fill in the missing values given the current 
estimate of the unknown parameters .

• Maximization:  re-estimate  by maximizing the likelihood of 
the data in its currently imputed form.

• Repeat the E-step and M-step until you get convergence.
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MEMEMEMEMEMEMEMEME

• Example: suppose our data contains only the single variable X.
• Data: X={100, 80, 100, 110, 120, 90, NA , NA , NA , NA}

• Assume X is normally distributed  MLE = mean(X)

• Here the EM algorithm is simple, and quickly converges to 
what we know to be true.

• Step 0: guess:   = -9999
• E-step: X={100, 80, 100, 110, 120, 90, -9999, -9999, -9999, -9999}
• M-step: MLE ≈ -3940
• E-step: X={100, 80, 100, 110, 120, 90, -3940, -3940, -3940 , -3940}
• M-step: MLE ≈ -1516
• E-step: X={100, 80, 100, 110, 120, 90, -1516, -1516, -1516, -1516}

• …
• E-step: X={100, 80, 100, 110, 120, 90, 100, 100, 100, 100}
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More Realistic 

• With multiple variables {X1, X2, X3, X4} a common assumption 
is that the data is MVN(, ).

• Here the EM algorithm is simple, and quickly converges to 
what we know to be true.

• Step 0: make initial guess:  (0, 0)
• E-step1: using (0, 0) calculate regression coefficients for linear model 

that predicts 
– X1 in terms of X2, X3, X4

– X2 in terms of X1, X3, X4

– Etc

• M-step1:  calculate MLE estimate (1, 1) using the data from E-step1

• Rinse, repeat
• … (2, 2) , (3, 3) , (4, 4) , …
• …continue until your estimate of (, ) converges.
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EM Observations

• EM is a clever way of calculating maximum likelihood 
estimates

• Does not require monotonicity in pattern of missing data
• Does require a statistical model of one’s data (often MVN)

• In a regression setting, the EM step would not distinguish 
between the predictive and target variables 

• All variables are used in EM routine
• You should throw the target variable in along with the predictive 

variables.

• EM uses the correlation structure of the data to impute 
missing values.

• Your current estimate of  allows you to compute the regression 
parameters that relate Xi to all of the other variables in the data.



Multiple Imputation

Motivation
Case Studies
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Multiple Imputation

• EM is great, but in practice is hard to implement for anything 
more complex than traditional (log)linear models.

• Multiple Imputation has same advantages as EM
• Consistency
• Asymptotic efficiency
• Asymptotic normality

• Further advantage of MI:  can be used for any type of model 
(not just linear regression)
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Multiple Imputation

• 3 major steps:  imputation  modeling  pooling

• Start with incomplete data  impute missing values multiple 
times  perform your analysis on each imputed dataset 
 pool results into final model.
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Performing the Multiple Imputations

• Suppose we have two variables X and Y, with many missing 
values of X.

• We can estimate the missing values of X by using a regression 
equation:  xi ≈ a + byi

• Roughly speaking:  each imputed value is computed using the 
formula

• sx|y is the estimate of the standard deviation of the regression 
of X on Y.

• Therefore each imputed value of X involved a random draw 
from the regression of X on Y.

),0(~~
|yxiiii snuwhereubyax 
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Known Unknowns

• But this formula isn’t quite right:  it treats {a, b, sx|y} as 
known quantities from which we can randomly draw multiple 
imputed values of X.

• In actuality we don’t know the values of these parameters.
• We only have estimates.

 it is best to draw a different set of parameters {a, b, sx|y} for 
each imputed dataset.

• These would be drawn from the Bayesian posterior distribution 
of {, , x|y}

• The process of doing this is known as “data augmentation”

),0(~~
|yxiiii snuwhereubyax 
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Pooling the Multiple Models

• Once we’ve created the imputed datasets (typically 5-10) we 
build our model or perform our analysis separately on each of 
the datasets.

• Note that we can perform any statistical analysis on the 
multiply imputed datasets.

• Regression, GLM, Quantile Regression, Principal Components, …
• On each of the imputed datasets we proceed as if there were no 

missing data.

• Next we pool the results into a single model.
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Pooling the Multiple Models

• To calculate the pooled model parameters, we do the “obvious”
thing:

• To calculate standard errors we must take into account both 
within variation and between variation:

• These two formulas are generic, and apply to the parameters 
of any models fit on multiple imputed datasets.
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Multiple Imputation in Practice

• SAS has many MI algorithms integrated into PROC MI

Parameters for regression models are 
simulated using Bayesian inference to 
introduce appropriate variation

Regression Method

Similar to the Regression Method above, 
but randomly select from ‘similar’ cases 
for random draws

Predictive Means 
Matching (PMM)

Propensity scores of missing values 
combined with Bayesian bootstrapping to 
make random draws from similar 
observations

Propensity Score 
Method

Utilize a Markov Chain and Bayesian 
inference to impute missing values

Markov Chain Monte 
Carlo (MCMC)

DescriptionMethod
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Markov Chain Monte Carlo (MCMC)

• MCMC utilizes a long chain of simulated variables, drawing 
from the conditional covariance matrix to impute missing 
values

“Reasonable” values may not be 
obtained – MVN assumption

Can be used to produce 
monotonicity

Convergence may not be 
guaranteed

Can utilize informative priors to 
get quicker convergence

Computationally intensiveDoes not require monotonicity

ConsPros

Simulate from 
conditional 
distribution

Simulate 
posterior 

population 
means and 
covariance 

matrix
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Propensity Scoring

• Calculate propensity of missingness for an observation
• Group observations by propensity
• Bayesian bootstrapping to generate space of missing values by 

group
• Impute via random sampling from missing value space

Does not utilize correlations 
among covariates

Generates values only from 
within the known distribution

ConsPros

Propensity Scoring is not suitable for imputing values on 
predictive variables for use in regression analyses!
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Predictive Means Matching

• Build a regression model for missing values on a variable 
(requires monotonicity)

• Draw from the MVN distribution of parameters
• Generate predictive values on all cases
• To impute, find cases with similar predicted values and 

randomly draw one, assigning the observed values
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Case Study #2 – MI In Practice
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