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ANTITRUST Notice

The Casualty Actuarial Society is committed to adhering strictly to the letter and 
spirit of the antitrust laws.  Seminars conducted under the auspices of the CAS 
are designed solely to provide a forum for the expression of various points of view 
on topics described in the programs or agendas for such meetings.  

Under no circumstances shall CAS seminars be used as a means for competing 
companies or firms to reach any understanding – expressed or implied – that 
restricts competition or in any way impairs the ability of members to exercise 
independent business judgment regarding matters affecting competition.  

It is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to violate 
these laws, and to adhere in every respect to the CAS antitrust compliance policy.  
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Outline
§ Overview of Statistical Modeling
§ Linear Models

– ANOVA
– Simple Linear Regression
– Multiple Linear Regression
– Categorical Variables
– Transformations

§ Generalized Linear Models
– Why GLM?
– From Linear to GLM
– Basic Components of GLM’s
– Common GLM structures

§ References
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General Steps in Modeling
Goal: Explain how a variable of interest depends on some other variable(s).  

Once the relationship (i.e., a model) between the dependent and 
independent variables is established, one can make predictions about the 
dependent variable from the independent variables.

1. Collect/build potential models and data with which to test models

2. Parameterize models from observed data

3. Evaluate if observed data follow or violate model assumptions

4. Evaluate model fit using appropriate statistical tests

– Explanatory or predictive power

– Significance of parameters associated with independent variables

5. Modify model

6. Repeat
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Basic Linear Model Structures

§ ANOVA : Yij = µ + ψi + eij

– Assumptions: errors are independent and follow N(0,σe2 ) – Normal distribution with mean of 
zero and constant variance σe2 

∑ ψi = 0 i = 1,…..,k (fixed effects model)
ψi ~ N(0,σψ2 ) (random effects model)

§ Simple Linear Regression :  yi = bo + b1xi + ei

– Assumptions: 
• linear relationship 
• errors are independent and follow N(0,σe2 )

§ Multiple Regression : yi = bo + b1x1i + ….+ bnxni + ei

– Assumptions: same as simple regression, but with n independent random variables (RV’s)

§ Transformed Regression : transform x, y, or both; maintain assumption that 
errors are N(0,σe2 )

yi = exp(xi)
log(yi) = xi
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One-way ANOVA

Yij = µ + ψi + eij

Yij is the jth observation on the ith treatment
j= 1,….ni

i= 1,….k  treatments or levels
µ is the common effect for the whole experiment
ψi is the ith treatment effect
eij is random error associated with observation Yij , eij ~N(0,σe2 ) 
§ ANOVAs can be used to test whether observations come from different 

populations or from the same population 
“Is there a statistically significant difference between two groups of claims?”

Is the frequency of default on subprime loans different than that for prime loans?
Personal Auto: Is claim severity different for Urban vs Rural locations?
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One-way ANOVA

Yij = µ + ψi + eij

§ Assumptions of ANOVA model
– independent observations
– equal population variances
– Normally distributed errors with mean of 0 
– Balanced sample sizes (equal # of observations in each group)

§ Prediction: 
– (observation) Y = common mean + treatment effect.  
– Null hypothesis is no treatment effect.  Can use contrasts or categorical 

regression to investigate treatment effects.   
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One-way ANOVA

§ Potential Assumption violations:
– Implicit factors: lack of independence within sample (e.g., serial correlation)
– Lack of independence between samples (e.g., samples over time on same subject)
– Outliers: apparent non-normality by a few data points
– Unequal population variances
– Unbalanced sample sizes

§ How to assess:
– Evaluate “experimental design” -- how was data generated? (independence)
– Graphical plots (outliers, normality)
– Equality of variances test (Levene’s test)
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Simple Regression

§ Model: Yi = bo + b1Xi + ei

– Y is the dependent variable explained by X, the independent 
variable

– Y: mortgage claim frequency depends on X: Seriousness of 
delinquency

– Y: claim severity depends on X: Accident year

– Want to estimate how Y depends on X using observed data 
– Prediction: Y= bo + b1 x* for some new x* (usually with some 

confidence interval)
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Simple Regression

§ Model: Yi = bo + b1Xi + ei

– Assumptions: 
1) model is correct (there exists a linear relationship)
2) errors are independent 
3) variance of ei constant
4) ei ~ N(0,σe2 )

In terms of robustness, 1) is most important, 4) is least important
Parameterize:
Fit bo and b1 using Least Squares:

minimize: ∑ [yi – (bo + b1xi )]2
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– The method of least squares is a formalization of best fitting a line through data with a ruler 
and a pencil

– Based on a correlative relationship between the independent and dependent variables

Simple Regression

1

2

1

( )( )
,    

( )

N

i i
i

N

i
i

Y Y X X
a Y X

X X
β β=

=

− −
= = −

−

∑

∑

Slope Intercept

Mortgage Insurance Average Claim Paid Trend

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1985 1990 1995 2000 2005 2010

Accident Year

S
ev

er
ity Severity

Predicted Y

Note: All data in this presentation 
are for illustrative purposes only



12

§ How much of the sum of squares is explained by the regression? 

SS = Sum Squared Errors

SSTotal = SSRegression + SSResidual (Residual also called Error)

SSTotal = ∑ (yi – y )2

SSRegression =  b1 est*[∑ xi yi -1/n(∑ xi )(∑ yi)]

SSResidual = ∑ (yi – yi est)2

= SSTotal – SSRegression

Simple Regression

ANOVA
df SS

Regression 1 2,139,093,999
Residual 18 191,480,781
Total 19 2,330,574,780



13

Simple Regression 

MS = SS divided by degrees of freedom

R2: (SS Regression/SS Total)
• percentage of variance explained by linear relationship

F statistic: (MS Regression/MS Residual)
• significance of regression: 

– tests Ho: b1=0 v. HA: b1≠0

ANOVA
df SS MS F Significance F

Regression 1 2,139,093,999 2,139,093,999 201.0838 0.0000
Residual 18 191,480,781 10,637,821
Total 19 2,330,574,780
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T statistics: (bi est – Ho(bi)) / s.e.(bi est)
• significance of coefficients 

• T2 = F for b1 in simple regression

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -3,552,486.3 252,767.6 -14.054 0.0000 -4,083,531 -3,021,441
Accident Year 1,793.5 126.5 14.180 0.0000 1,528 2,059

Simple Regression 
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§ p-values test the null hypotheses that the parameters b1 =0 or bo = 0.  If b1 
is 0, then there is no linear relationship between the independent variable 
Y (severity) and the dependent variable X (accident year).  If bo is 0, then 
the intercept is 0.

Simple Regression

• 92% of the variance is explained by the regression

• The probability of observing this data given that b1 =0 is 
<0.00001, the significance of F

• Both parameters are significant

• F = T2 for X Variable 1  201.08 = (14.1804)2

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.958
R Square 0.918
Adjusted R Square 0.913
Standard Error 3261.57
Observations 20

ANOVA
df SS MS F Significance F

Regression 1 2,139,093,999 2,139,093,999 201.0838 0.0000
Residual 18 191,480,781 10,637,821
Total 19 2,330,574,780

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept -3,552,486.3 252,767.6 -14.054 0.0000 -4,083,531 -3,021,441
Accident Year 1,793.5 126.5 14.180 0.0000 1,528 2,059
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Plot of Standardized Residuals
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Standard Residuals

Residuals Plot
§ Looks at (yobs – ypred) vs. ypred

§ Can assess linearity assumption, constant variance of errors, and look for outliers
§ Residuals should be random scatter around 0, standard residuals should lie 

between -2 and 2
§ With small data sets, it can be difficult to asess



17

Normal Probability Plot of Residuals
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Standard Residuals

Normal Probability Plot
§ Can evaluate assumption ei ~ N(0,σe2 )

– Plot should be a straight line with intercept µ and slope σe2 

– Can be difficult to assess with small sample sizes
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Residuals
§ If absolute size of residuals increases as predicted value increases, may 

indicate nonconstant variance

§ May indicate need to transform dependent variable

§ May need to use weighted regression

§ May indicate a nonlinear relationship

Plot of Standardized Residuals
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Distribution of Observations
§ Average claim amounts for Rural drivers is normally distributed as are average claim 

amounts for Urban drivers

§ Mean for Urban drivers is twice that of Rural drivers

§ The variance of the observations is equal for Rural and Urban

§ The total distribution of average claim amounts is not Normally distributed 
– here it is bimodal

Distribution of Individual Observations

Rural Urban
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Distribution of Observations
§ The basic form of the regression model is Y = bo + b1X + e

§ µi = E[Yi] = E[bo + b1Xi + ei] = bo + b1Xi + E[ei] = bo + b1Xi

§ The mean value of Y, rather than Y itself, is a linear function of X

§ The observations Yi are normally distributed about their mean µi   Yi ~ N(µi , σe2)

§ Each Yi can have a different mean µi but the variance σe2 is the same for each 
observation

X1 X2

Line Y = bo + b1X

bo + b1X1

bo + b1X2

X

Y
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Predicting with regression
§ MSResiduals (also called se2) is an estimate of σe2, the variability of the errors
§ Estimated Y has a lower standard error than Predicted Y, but both have the 

same point estimate - µi

– Ypred = bo + b1 x* for some new x*
– Yest = bo + b1 x* for some new x*

§ standard error for both use se in formula 
§ Ypred standard error accounts for random variability around the line in addition to 

the uncertainty of the line
§ Typically give a confidence interval around the point estimate (e.g. 95%)
§ (Ypred ± se(Ypred)*T0.025, DF)
§ Predictions should only be made within the range or slightly outside of observed 

data.  Extrapolation can lead to erroneous predictions
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Multiple Regression
§ Y = β0 + β1X1 + β2X2 + … + βnXn + ε
§ E[Y] = βX

§ Same assumptions as simple regression
1) model is correct (there exists a linear relationship)
2) errors are independent 
3) variance of ei constant
4) ei ~ N(0,σe2 )

§ Added assumption the n variables are independent
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Multiple Regression
§ Uses more than one variable in regression model 

– R-sq always goes up as add variables

– Adjusted R-Square puts models on more equal footing

– Many variables may be insignificant

§ Approaches to model building

– Forward Selection - Add in variables, keep if “significant”

– Backward Elimination - Start with all variables, remove if not “significant”

– Fully Stepwise Procedures – Combination of Forward and Backward
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Multiple Regression
§ Goal : Find a simple model that explains things well with 

assumptions met

– Model assumes all predictor variables independent of one another–
as add more, they may not be (multicollinearity—strong linear 
relationships among the X’s)

– As you increase the number of parameters (one for each variable in 
regression) you lose degrees of freedom
• want to keep df as high as possible for general predictive power

• problem of over-fitting
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Multiple Regression

§ Multicollinearity arises when there are strong linear relationships among the x’s

§ May see: 

– High pairwise correlations amongst the x’s

– Large changes in coefficients when another variable added or deleted

– Large change in coefficients when data point added or deleted

– Large standard deviations of the coefficients

§ Some solutions to combat overfitting and multicollinearity

– Stepwise Regression (Forwards, Backwards, Exhaustive) -- Order matters

– Drop one or more highly correlated variables

– Use Factor Analysis or Principle Components Analysis to combine correlated 
variables into a smaller number of new uncorrelated variables
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Multiple Regression
§ F significant and Adj R-sq high 

§ Degrees of freedom ~ # observations - # parameters
§ Any parameter with a t-stat with absolute value less than 2 is not significant

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.97
R Square 0.94
Adjusted R Square 0.94
Standard Error 0.05
Observations 586

ANOVA
df SS MS F Significance F

Regression 10 17.716 1.772 849.031 < 0.00001
Residual 575 1.200 0.002
Total 585 18.916

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 1.30 0.03 41.4 0.00 1.24 1.36
ltv85 -0.10 0.01 -12.9 0.00 -0.11 -0.09
ltv90 -0.07 0.01 -9.1 0.00 -0.08 -0.06
ltv95 -0.04 0.01 -9.1 0.00 -0.05 -0.03
ltv97 -0.02 0.01 -6.0 0.00 -0.03 -0.01
ss30 -0.75 0.01 -55.3 0.00 -0.77 -0.73
ss60 -0.61 0.01 -56.0 0.00 -0.63 -0.59
ss90 -0.45 0.01 -53.5 0.00 -0.47 -0.43
ss120 -0.35 0.01 -40.1 0.00 -0.37 -0.33
ssFCL -0.24 0.01 -22.8 0.00 -0.26 -0.22
HPA -0.48 0.03 -18.0 0.00 -0.53 -0.43
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Multiple Regression
§ Residuals Plot

Standard Residual vs Predicted Claim Rate

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8

Predicted Claim Rate

St
an

da
rd

 R
es

id
ua

l

Standard Residuals



28

Normal Probability Plot
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Multiple Regression
§ Normal Probability Plot
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Categorical Variables
§ Explanatory variables can be discrete or continuous
§ Discrete variables generally referred to as “factors”
§ Values each factor takes on referred to as “levels”
§ Discrete variables also called Categorical variables
§ In the multiple regression example given, all variables were discrete 

except HPA (embedded home price appreciation)
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Categorical Variables
§ Assign each level a “Dummy” variable

– A binary valued variable
– X=1 means member of category and 0 otherwise
– Always a reference category 

• defined by being 0 for all other levels

– If only one factor in model, then reference level will be intercept of regression 
– If a category is not omitted, there will be linear dependency 

• “Intrinsic Aliasing”
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Categorical Variables
§ Example: Loan – To – Value (LTV)

– Grouped for premium – 5 Levels
• <=85%, LTV85
• 85.01% - 90%, LTV90
• 90.01% - 95%, LTV95
• 95.01% - 97%, LTV97
• >97% Reference

– Generally postively correlated with claim frequency
– Allowing each level it’s own dummy variable allows for the possiblity of 

non-monotonic relationship
– Each modeled coefficient will be relative to reference level

X1 X2 X3 X4
Loan # LTV LTV85 LTV90 LTV95 LTV97

1 97 0 0 0 1
2 93 0 0 1 0
3 95 0 0 1 0
4 85 1 0 0 0
5 100 0 0 0 0
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Transformations
§ A possible solution to nonlinear relationship or unequal variance of errors
§ Transform predictor variables, response variable, or both
§ Examples:

– Y′ = log(Y)

– X′ = log(X)

– X′ = 1/X

– Y′ = √Y

§ Substitute transformed variable into regression equation

§ Maintain assumption that errors are N(0,σe2 )
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Why GLM?
§ What if the variance of the errors increases with predicted values?

– More variability associated with larger claim sizes

§ What if the values for the response variable are strictly positive?
– assumption of normality violates this restriction

§ If the response variable is strictly non-negative, intuitively the 
variance of Y tends to zero as the mean of X tends to zero

– Variance is a function of the mean

§ What if predictor variables do not enter additively?
– Many insurance risks tend to vary multiplicatively with rating factors 
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Classic Linear Model to Generalized Linear Model

§ LM:
– X is a matrix of the independent variables

• Each column is a variable

• Each row is an observation

– β is a vector of parameter coefficients

– ε is a vector of residuals

§ GLM: 
– X, β mean same as in LM

– ε is still vector of residuals

– g is called the “link function”

LM
Y = β X+ ε

E[Y] = β X
E[Y] = µ = η

ε ~ N(0,σe2 )

GLM
g (µ) = η = β X
E[Y] = µ = g -1(η)

Y = g -1(η) + ε

ε ~ exponential family



35

Classic Linear Model to Generalized Linear Model
§ LM:

1) Random Component : Each component of Y is independent and normally distributed.  
The mean µi allowed to differ, but all Yi have common variance σe2

2) Systematic Component : The n covariates combine to give the “linear predictor”

η = β X
3) Link Function : The relationship between the random and systematic components is 

specified via a link function.  In linear model, link function is identity fnc.

E[Y] = µ = η

§ GLM: 

1) Random Component : Each component of Y is independent and from one of the 
exponential family of distributions

2) Systematic Component : The n covariates are combined to give the “linear predictor”

η = β X
3) Link Function : The relationship between the random and systematic components is 

specified via a link function g, that is differentiable and monotonic

E[Y] = µ = g -1(η)
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Linear Transformation versus a GLM
§ Linear transformation uses transformed variables

– GLM transforms the mean

– GLM not trying to transform Y in a way that approximates uniform variability

§ The error structure
– Linear transformation retains assumption Yi ~ N(µi , σe2)

– GLM relaxes normality

– GLM allows for non-uniform variance

– Variance of each observation Yi is a function of the mean E[Yi] = µi

X1 X2
X

Y Linear
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The Link Function
§ Example: the log link function g(x) = ln (x)  ; g -1 (x) = ex

§ Suppose Premium (Y) is an multiplicative function of Policyholder Age 
(X1) and Rating Area (X2) with estimated parameters β1 , β2

– ηi = β1 X1 + β2 X2

– g(µi) = ηi

– E[Yi] = µi = g -1(ηi)
– E[Yi] = exp (β1 X1 + β2 X2)
– E[Y] = g -1(β X)

– E[Yi] = exp (β1 X1) • exp(β2 X2) = µi

– g(µi) = ln [exp (β1 X1) • exp(β2 X2) ] = ηi = β1 X1 + β2 X2

– The GLM here estimates logs of multiplicative effects
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Examples of Link Functions

§ Identity
– g(x) = x g -1 (x) = x

§ Reciprocal
– g(x) = 1/x g -1 (x) = 1/x

§ Log
– g(x) = ln(x) g -1 (x) = ex

§ Logistic
– g(x) = ln(x/(1-x))  g -1 (x) = ex/(1+ ex)
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Error Structure
§ Exponential Family

– Distribution completely specified in terms of its mean and variance

– The variance of Yi is a function of its mean

§ Members of the Exponential Family

– Normal (Gaussian) -- used in classic regression

– Poisson (common for frequency)

– Binomial

– Negative Binomial

– Gamma (common for severity)

– Inverse Gaussian

– Tweedie (common for pure premium)
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General Examples of Error/Link Combinations

§ Traditional Linear Model
– response variable: a continuous variable
– error distribution: normal
– link function: identity

§ Logistic Regression
– response variable: a proportion
– error distribution: binomial
– link function: logit

§ Poisson Regression in Log Linear Model
– response variable: a count
– error distribution: Poisson
– link function: log

§ Gamma Model with Log Link
– response variable: a positive, continuous variable
– error distribution: gamma
– link function: log
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Specific Examples of Error/Link Combinations

µ(1-µ)BinomialLogitRetention Rate

µp (1<p<2)TweedieLogPure Premium

µ2GammaLogClaim Severity

µPoissonLogClaim Frequency

Variance FncError Structure Link FncObserved 
Response
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