

GLM III

Duncan Anderson MA FIA Partner, EMB Consultancy LLP

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}.\beta_j + \xi_i)$$

$$Var[Y_i] = \phi . V(\mu_i)/\omega_i$$

$$E[Y_i] = \mu_i = g^{-1}(\sum X_{ij}.\beta_j + \xi_i)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\uparrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

$$\uparrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow$$

Scale function Prior weights
$$Var[Y_i] = \phi.V(\mu_i)/\omega_i$$

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}.\beta_j + \xi_i)$$

$$Var[Y_i] = \phi.V(\mu_i)/\omega_i$$

Link function

Eg if
$$\Sigma X_{ij}.\beta_j =$$

 α + β if male + γ if small car + δ if big car

$$g(x) = x \Rightarrow E[Y_i] = \alpha + \beta + \gamma + \delta$$

$$g(x) = In(x) \Rightarrow E[Y_i]$$
 = $e^{\alpha + \beta + \gamma + \delta}$
= $e^{\alpha} \cdot e^{\beta} \cdot e^{\gamma} \cdot e^{\delta}$
= A . B . C . D

Box-Cox link function test

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}.\beta_i + \xi_i) \quad Var[Y_i] = \phi.V(\mu_i)/\omega_i$$

Box-Cox link function defined as:

$$g(x) = (x^{\lambda} - 1) / \lambda$$
 for $\lambda \neq 0$; $In(x)$ for $\lambda = 0$

$$\lambda = 1$$
 \Rightarrow g(x) = (x - 1) \Rightarrow additive (with a base level shift)

$$\lambda \to 0$$
 $\Rightarrow g(x) \to ln(x)$ \Rightarrow multiplicative (via l'Hôpital)

$$\lambda = -1$$
 $\Rightarrow g(x) = 1-1/x$ \Rightarrow inverse (with a base level shift)

Test a range of values of λ and see which maximizes likelihood

Box-Cox link function test

Box-Cox link function test

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

Tweedie GLMs

Tweedie GLMs

- Incurred losses have a point mass at zero and then a continuous distribution
- Poisson and gamma not suited to this
- Tweedie distribution has
 - point mass at zero
 - a parameter which changes shape above zero

Formularization of GLMs

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}.\beta_j + \xi_i)$$

$$Var[Y_i] = \phi.V(\mu_i)/\omega_i$$

Normal:
$$\phi = \sigma^2$$
, $V[x] = 1 \Rightarrow Var[Y_i] = \sigma^2$

Poisson:
$$\phi=1$$
, $V[x]=x \Rightarrow Var[Y_i] = \mu_i$

Gamma:
$$\phi = k$$
, $V[x] = x^2 \implies Var[Y_i] = k\mu_i^2$

Tweedie:
$$\phi = k$$
, $V[x] = x^p \implies Var[Y_i] = k\mu_i^p$

Tweedie GLMs

Tweedie: $\phi=k$, $V[x]=x^p \Rightarrow Var[Y_i] = k\mu_i^p$

- ▶ p=1 Poisson
- ▶ p=2 gamma
- 1<p<2 Poisson/gamma process(can also be <0 or >2)
- Need to estimate both k and p when fitting models
- ➤ Typically p≈1.5 for incurred claims

10 11 12 13 14 15

Exposure — Model Prediction at Base levels — Model Prediction +/- 2 Standard Errors

16

18

8

9

0.1

Example 1

Vehicle age - amounts

Vehicle age - pure premium

Vehicle age - pure premium

Urban density - frequency

Urban density - amounts

Urban density - risk premium

Gender - frequency

Gender - frequency

Gender - amounts

Gender - amounts

Gender - pure premium

Vehicle age - frequency

Vehicle age - amounts

Vehicle age - pure premium

Tweedie GLMs

- Helpful when it's important to fit to incurred costs directly
- Similar results to frequency/severity traditional approach if frequency and amounts effects are clearly weak or clearly strong
- Distorted by large insignificant effects
- Removes understanding of what is driving results
- Smoothing harder

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

Splines

- A spline is
 - a series of polynomials...
 - ...joining at "knots"...
 - ..."smoothly"
 - (k "internal" knots and 2 extra knots at end of data range)
- A cubic spline is
 - a spline made up of cubic polymonials
 - continuous at each knot
 - first derivative continuous at each knot
 - second derivative continuous at each knot
- A regression spline is
 - a formularization which allows splines to be fitted within a GLM framework
 - requires manual selection of knots

Regression splines

Regression splines

Regression slines

Regression splines

$$\begin{bmatrix} \mathbf{u0},\mathbf{u1}) & \mathbf{N0,0} \\ \mathbf{u1},\mathbf{u2}) & \mathbf{N1,0} \\ \mathbf{u2},\mathbf{u3}) & \mathbf{N2,0} \\ \mathbf{u3},\mathbf{u4}) & \mathbf{N3,0} \\ \mathbf{u4},\mathbf{u5}) & \mathbf{N4,0} \\ \mathbf{n4,1} \\ \mathbf{n5,0} \\ \mathbf{n6} \\ \mathbf{n$$

$$N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)$$

B-splines - constant extrapolation

B-splines - linear extrapolation

B-splines - quadratic extrapolation

Example

Splines

- Can be useful when continuous effect required
- Increases complexity
- Knot selection important and iterative
 - interactively select design of knot placement on curve fitted to parameter estimates and then incorporate within model
- Can be helpful when simplifying interactions

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}.\beta_j + \xi_i)$$
Offset term

When modeling BI

Set PD fitted values to be offset term

GLM will seek effects over and above assumed PD effect

Reference models - approach 2

(1) GLM on BI claims on all the data - the "correct" answer

- (2) Traditional GLM on BI claims on the "small company"
- (3) Propensity reference model on BI claims of PD claims

Example result

Example result

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

Aliasing

- The removal of unwanted and unnecessary parameters
 - ➤ formally, linear dependencies in the design matrix
- Intrinsic aliasing
 - happens naturally because of the way the model is designed
- Extrinsic aliasing
 - happens "accidentally" because of some quirk in the data

Intrinsic aliasing

Consider model of form

$$\mu_i = \beta_1$$
 (base level)

- + β_2 if observation i is male
- + β_3 if observation i is female
- + β_4 if observation i is a small car
- + β_5 if observation i is a medium car
- + β_6 if observation i is a big car

Intrinsic aliasing - X.\(\beta\)

Base	e Male	Female	Small	Med	Large	`		
1	1	0	0	1	0		$\int \beta_1$)
1	1	0	1	0	0		β_2	
1	0	1	0	1	0		β_3	
1	1	0	0	0	1		β_4	
1	0	1	0	0	1		β_5	
1	1	0	0	1	0		β_6	
						J .	(10	

Intrinsic aliasing

Consider model of form

$$\mu_i = \beta_1$$
 (base level)

- + β₂ if observation i is male
 - + β_3 if observation i is female
 - + β_4 if observation i is a small car
- + β₅ if observation it is a medium car
- + β_6 if observation i is a big car

"Base levels"

Intrinsic aliasing - X.β

Base	Ma	ale Fer	nale	Small	Me	ed Large	`		
1		(C	0	,	0		$\int \beta_1$)
1		(C	1	(0		P ₂	•
1	(1	0		0		β_3	
1	•	(C	0	() 1		β_4	
1	(1	0	() 1		ß	
1	,	(C	0	,	0		β_6	
							<i>J</i> .		

Intrinsic aliasing - X.β

Base	Femal	e Small	Large	•	
$\int 1$	0	0	0	β_1	\
1	0	1	0		
1	1	0	0	β_3	
1	0	0	1	β_4	
1	1	0	1		
1	0	0	0	$\int \int \beta_6$	\int
). ('°)	,

Gender - frequency

Extrinsic aliasing

Exposure

Density→ Vealth	Very urban	Urban	Rural Intrins aliasir		Unknown Extrinsic aliasing
Very rich	12,123	14,673	25,353	22,342	0
Rich Intrinsic aliasing	32,343	36,945	40,236	32,234	0
Poor	29,454	28,343	33,324	26,954	0
Very poor	14,343	12,456	18,343	9,934	0
Unknown	0	0	0	0	1,235

"Near" aliasing

Exposure

Density→ Vealth	Very urban	Urban	Rufal Intrinsi aliasin	C	Unknown
Very rich	12,123	14,673	25,353	22,342	0
Rich Intrinsic aliasing	32,343	36,945	40,236	32,234	0
Poor	29,454	28,343	33,324	26,954	0
Very poor	14,343	12,456	18,343	9,934	0
Unknown	0	0	0	22	1,235

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

- Take models
- Take relevant mix of business
 - eg current in force policies
- For each record calculate expected frequencies and severities according to the models
- For each record, calculate expected total cost of claims "C"
- Fit a GLM to "C" using all available factors

	PD	PD	PI	PI
	Freq	Sev	Freq	Sev
Base	10%	\$1500	2%	\$5000
Male	1	1	1	1
Female	0.9	0.85	0.95	0.88
Small	1.1	0.8	1.15	0.7
Medium	1	1	1	1
Large	0.9	1.3	0.95	1.25

Policy	Gender	Car	PD F	PD S	PLF	PIS	Cost
762374	Male	Large	9%	\$1,950	1.9%	\$6,250	294.25
762375	Male	Small	11%	\$1,200	2.3%	\$3,500	212.50
762376	Female	Medium	9%	\$1,275	1.9%	\$4,400	198.35
762377	Male	Medium	10%	\$1,500	2.0%	\$5,000	250.00

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}.\beta_j + \xi_i)$$
Offset

$$E[Y_i] = \mu_i = g^{-1}(\sum X_{ij}, \beta_j + \xi_i)$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_3 \\ \beta_4 \\ \beta_6 \end{pmatrix}$$

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}.\beta_j + \xi_i)$$

Base	Female	Small	Large				
1		0	0) (0	\	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
1		1	0		β_1		0.1
1		0	0				0
1		0	1		β_4	+	0.1
1		0	1		Ρ4		0
1		0	0		β_6		
• • • • • •			• • • •		Mb	J	\ <i>J</i>

$$E[Y_i] = \mu_i = g^{-1}(\Sigma X_{ij}.\beta_j + \xi_i)$$

Base	Female	Small	Large	
1	0	0	0	
1	0	1	0	β_1
1	1	0	0	0.1
1	0	0	1	β_4
1	1	0	1	P4
1	0	0	0	β_6
• • • • • •	• • • • • • • • •	• • • • •	• • •	

Offset example No Claims Discount

Cramer's V measures exposure correlation

Factor (#Levels)	Gender	Rating Area	Vehicle Category	Age	No Claims Discount R	Driving estriction	Vehicle Age	LossYear
Gender	-	-	-	-	-	-	-	_
Rating Area	0.017	-	-	High -	-	-	-	=
Vehicle Category	0.297	0.017	-	g	-	-	-	-
Age	0.182	0.035	0.087		-	-	-	-
No Claims Discount	0.126	0.021	0.139	0.253	- Lg	- WC	-	-
Driving Restriction	0.076	0.034	0.088	0.224	9.112	_	_	-
Vehicle Age	0.044	0.016	0.068	0.025	0.025	0.041	-	-
LossYear	0.006	0.014	0.064	0.126	0.124	0.055	0.049	-

0.253 implies high correlation

Company decides to maintain current NCD relativities

No Claims Discount

Impact of offsetting on indications of other variables depends on exposure correlation with NCD

Offset Example No Claims Discount

Cramers V=.025 (Low)

No material difference between model with and without the offset for "NCD"

Cramers V=.253 (High)

Youthful relativities increased to account for premiums lost by dampening surcharges for policies with less than 4 years clean

Checking the effectiveness of compensating factors

Checking the effectiveness of compensating factors

Using restrictions

- Apply at risk premium (model combining) stage
- Other factors will compensate use to restrict the multivariate effect, not the overall effect

	Desirable Subsidy	Undesirable Subsidy		
Example	Sr. Mgmt wants subsidy to attract drivers 65+	Regulators force subsidy of drivers 65+		
Result of Offset	Correlated factors will adjust to make up for the difference. For example, territories with retirement communities will increase			
Recommendation	Do Not Offset	Offset		

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

Model validation: holdout samples

Hold-out samples are effective at validating model

- Determine estimates based on part of dataset
- Uses estimates to predict other part of dataset

Larger companies may consider 3 splits

- 1. Build models
- 2. Fit parameters
- 3. Validate models/parameters

Predictions should be close to actuals for populated cells

Model validation

Model validation

- Auto own damage frequency
- Many rating factors
- Just a few interactions
- For under 30s segment, model is not predictive in the future

- Auto own damage frequency
- Many rating factors
- Many interactions
- Model can predict well in the future, even for small segments

Model validation

Model validation Test of statistical validity

Model validation Demonstration of financial materiality

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

Demand models

- Demand models are a key ingredient to price optimization
- Elasticity is (minus) the slope of the curve

GLMs with Interactions

Generalized Non-Linear Models

- GLM
 - \rightarrow E[Y] = $\underline{\mu}$ = $g^{-1}(\mathbf{X}.\underline{\beta} + \underline{\xi})$
- **GNM**
 - > many forms, eg
 - \rightarrow E[Y] = μ = g⁻¹(X. β + e^{Z. γ})
 - \rightarrow E[Y] = μ = g⁻¹(X. β + Y. ζ .e^{Z. γ})
- ➤ A potentially useful form for demand modeling:
 - \rightarrow E[Y] = μ = 1 / (1 + exp($\mathbf{X} \cdot \underline{\beta} + \Delta P \cdot e^{\mathbf{Z} \cdot \underline{\gamma}})$)

Forces elasticity to be positive

Generalized Non-Linear Models

Often only relevant if models are complex

Number of interactions	% records with GLM negative elasticity
0	0%
1	0.04%
2	0.3%
3	0.8%
4	1.5%

Agenda

- Testing the link function
- The Tweedie distribution
- Regression splines
- Reference models
- Aliasing/near-aliasing
- Combining models across claim types
- Restricted models
- Model validation
- Modeling elasticity / GNMs

GLM III

Duncan Anderson MA FIA Partner, EMB Consultancy LLP

