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Insurance is inherently a stochastic (random) process.  
Any set of data you examine will contain random 
results in addition to true relationships.

Dependent
Variable

=   Signal  +  Noise

Dependent
Variable

= +
Systematic 
Component

Random 
Component

Note: the presence of noise along with our signal is the basic reason credibility 
was conceived.  Due to the presence of noise, we don’t fully believe our 
point estimate.
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One-way pure premiums, loss per exposure, are a 
straight-forward method for determining relativities.

Why don’t we just look at pure premiums by relativity in 
order to set relative rates?

The problem with them is they are blind to the rest of 
the class plan.
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One-way pure premiums, loss per exposure, are a 
straight-forward method for determining relativities.  

For example, you look at pure premiums for youthfuls and find they 
deserve to be charged 2.00 times the rate of adults.

Then you look at points and pure premiums say that pointed drivers 
should be charged 1.50 times that of clean drivers.

Should a youthful with points get charged 3.00 times the rate of clean 
adults (1.50 * 2.00)?

Maybe, maybe not.  It depends on whether there is a distributional correlation 
between age and points.  Are young drivers more likely also to have points?  
If so, you’ve overcharged.
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One-way loss ratios are the most convenient alternative to 
pure premiums.  They are inherently multivariate 
because the premium “takes into account” the rest of 
the class plan.  

For example, if you look at the relative loss ratios between youthful 
and adult drivers, the premium within that loss ratio will reflect 
the current factors for points.

Because youthfuls have a higher percentage of points, their average 
premium will be higher due to the higher pointed factors.  This 
will lower the loss ratio.  In this way we don’t “double count” the 
effect of points and age.

Side note…what if points didn’t exist? Appropriate age factors would change.
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Why aren’t one-way loss ratios sufficient?

One-way studies using loss ratios assume that the rest of the class plan 
is good.  This is a big assumption when there are multiple changes 
which need to be made.

Suppose you want to examine the adequacy of both your age and 
points curves.  When you look at loss ratios by age, you are 
assuming your current points factors are good.  Vice versa for 
when you look at loss ratios by points.
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Another point of confusion: correlations versus 
interactions.

Correlations between two variables’ exposure distributions cause 
the results to be linked (remember points and age).  This is 
NOT an interaction.  It is an important effect and using 
multivariate techniques solves this problem.

Interactions are correlations between two variables’ indicated 
factors.  When you don’t know what factor to use until both 
variables are specified, you have an interaction.

It is perfectly possible for two variables to be correlated but have 
no interaction.  It is also possible for two variables to have an 
interaction but not be correlated!
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Correlation but no interaction
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Interaction but no correlation
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Correlation but no interaction – Prove that a one-way 
pure premium approach doesn’t work.
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Correlation but no interaction – Prove that a one-way 
pure premium approach doesn’t work.
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high!
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Minimum Bias Techniques

Multivariate procedure to optimize the relativities for 
two or more rating variables

Calculate relativities which are as close to the actual 
relativities as possible

“Close” measured by some bias function

Bias function determines a set of equations relating the 
observed data & rating variables

Use iterative technique to solve the equations and 
converge to the optimal solution



Introduction to Ratemaking
Multivariate Methods

Minimum Bias Techniques

Two rating variables with relativities Xi and Yj

Select initial value for each Xi

Use model to solve for each Yj

Use newly calculated Yjs to solve for each Xi

Process continues until solutions at each interval 
converge  
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Minimum Bias Techniques

Least Squares

Bailey’s Minimum Bias
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Minimum Bias Techniques –

Least Squares Method

Minimize weighted squared error between the indicated and the 
observed relativities

i.e., Min xy ∑ij wij (rij – xiyj)2

where

xi and yj = relativities for rating variables i and j

wij = weights

rij = observed relativity   
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Minimum Bias Techniques –

Least Squares Method

Formula:

xi =    ∑j wij rij yj

where 

xi and yj = relativities for rating variables i and j

wij = weights

rij = observed relativity   

∑j   wij  ( yj)2

Note: this formula is specific to a 
multiplicative model
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Minimum Bias Techniques –

Bailey’s Minimum Bias

Minimize bias along the dimensions of the class system

“Balance Principle” :

∑ observed relativity =  ∑ indicated relativity

i.e., ∑j wijrij = ∑j wijxiyj

where

xi and yj = relativities for rating variables i and j

wij = weights

rij = observed relativity   



Introduction to Ratemaking
Multivariate Methods

Minimum Bias Techniques –

Bailey’s Minimum Bias

Formula:

xi =    ∑j wij rij

where 

xi and yj = relativities for rating variables i and j

wij = weights

rij = observed relativity   

∑j   wij  yj

Note: this formula is specific to a 
multiplicative model
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Minimum Bias Techniques

Bailey’s method is less sensitive to the experience of 
single cells than the Least Squares method.

Can be multiplicative or additive.

Can be used for many dimensions (conversion can be 
difficult).

Possible to code the calculation directly into a 
spreadsheet.
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Minimum Bias Techniques

These techniques give only point estimates, yet we know 
all data contains both signal and noise.  Minimum bias 
techniques provide no method for quantifying the 
extent and impact of the noise.
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Simple linear regression…

y = a1x + a0 + ε

Dependent
Variable

=   Signal  +  Noise

Multiple linear regression…

y = anxn + … + a1x1 + a0 + ε

Classical Statistical Techniques
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Classical Statistical Techniques

7,5005,000Older

4,5001,500Younger

PointedCleanLossThis example has a couple of 
categorical variables, so we 
would formulate the model 
as…

y = a1x1 + a2x2 + a3x3 + ε
where 1 means younger,
2 means older, and
3 means clean)
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Classical Statistical Techniques

7,5005,000Older

4,5001,500Younger

PointedCleanLossWith 4 observations of this 
proposed relationship, we get…

y  = a1x1 + a2x2 + a3x3 + ε
1500 = a1 + 0 + a3 + ε1

4500 = a1 + 0 + 0 + ε2

5000 = 0 + a2 + a3 + ε3

7500 = 0 + a2 + 0 + ε4

To find an answer, we need a criterion 
for what is the “best” answer.  A 
typical approach is to minimize the 
sum of the squared errors (SSE).

SSE = ε1
2 + ε2

2 + ε3
2 + ε4

2
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Classical Statistical Techniques

7,5005,000Older

4,5001,500Younger

PointedCleanLossMinimizing the SSE in this simple 
example is easily done by taking 
partial derivatives (with respect 
to each coefficient) and setting 
them equal to zero.

This gives you a system of 3 
equations with 3 
unknowns…easy to solve.

Try it out.  I got… a1 = 4,375

a2 = 7,625

a3 = -2,750
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Classical Statistical Techniques

Finding the optimal answer for a multiple linear regression 
boils down to systems of equations.

However, systems of equations, especially as the number of 
variables and observations get more numerous, are more 
conveniently expressed through matrix notation and linear 
algebra.

Go back to our example…
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Classical Statistical Techniques

Y = [Y1, Y2, Y3, Y4] = [1500, 4500, 5000, 7500] 4 observations

X1 = [1, 1, 0, 0] 4 observations; 1 if younger, 0 if older

X2 = [0, 0, 1, 1] 4 observations; 1 if older, 0 if younger

X3 = [1, 0, 1, 0] 4 observations; 1 if clean, 0 if pointed

A = [a1, a2, a3] solving for these; one per x-variable

ε = [ε1, ε2, ε3, ε4] 4 observations
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Classical Statistical Techniques

Now collapse the separate x-variables into one matrix…

[1, 1, 0, 0] This is called the “design matrix” because it

X = [0, 0, 1, 1] specifies your model.

[1, 0, 1, 0]

With this final simplification, we can express the example situation 
using matrix notation…

Y = X.A + ε

(Note: this is the “fancy” version of Y = signal + noise)
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We’ve developed MLR into a simplified form where 
we can see it is one approach for separating the 
signal and the noise.  But what assumptions have 
we made along the way, and do we like them?

1. (Random Component) Observations are independent and come 
from a normal distribution with a common variance.

2. (Systematic Component) X.A is called the linear predictor, or η.

3. (Link function) The expected value of Y, E(Y), is equal to η.
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One by one…how well do these assumptions work for 
insurance?

1. (Random Component) Observations are independent and come 
from a normal distribution with a common variance.

For each variable in our model, there is an expected mean and some 
randomness about that mean.  The average loss for “younger 
drivers” may be $725, but why should the distribution of 
individual observations be normal about this?  In fact, normal 
distributions extend to negative numbers.  What’s a negative 
loss?

This assumption doesn’t work well for insurance.
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One by one…how well do these assumptions work for 
insurance?

1. (Random Component) Observations are independent and come 
from a normal distribution with a common variance.

Another problem of this assumption is the common variance.  Why 
should the distribution of losses for 15K limits have the same 
variance as the distribution of losses for 100K limits?  Wouldn’t 
you assume that 15K limits, with a low mean, would have less 
variance than 100K limits?

Again, this assumption doesn’t work well for insurance.
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One by one…how well do these assumptions work for 
insurance?

2. (Systematic Component) X.A is called the linear predictor, or η.

3. (Link function) The expected value of Y, E(Y), is equal to η.

This pair assumes that Y is predicted by the additive combination of 
the variables.  However, most insurance effects tend to combine 
multiplicatively.

Again, this assumption doesn’t work well for insurance.
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If the MLR assumptions don’t work well for 
insurance, then change them!  With the same 
general approach, but the following assumptions, 
you’ve transitioned from MLRs to GLMs.

1. (Random Component) Observations are independent, but come 
from one of the family of exponential distributions.

2. (Systematic Component) X.A is called the linear predictor, or η.

3. (Link function) The expected value of Y, E(Y), is equal to g-1(η).
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One by one…how well do these new assumptions 
work for insurance?

1. (Random Component) Observations are independent, but come 
from one of the family of exponential distributions.

Now we can assume that the distribution of severities about the mean 
follows a Gamma, and frequencies follow a Poisson.  These 
functions happen to match empirical evidence fairly well and 
they don’t allow negative output.

Also, the variances of these functions are functions of the mean, so 
that variables with low means also have low variances.
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One by one…how well do these new assumptions 
work for insurance?

2. (Systematic Component) X.A is called the linear predictor, or η.

3. (Link function) The expected value of Y, E(Y), is equal to g-1(η).

Instead of having Y automatically equal the additive effects of the 
predictors, we can let the predictors equal some function of the
expectation of Y.

g( E(Y) ) = η g is called the link
or function

E(Y) = g-1(η)
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One by one…how well do these new assumptions 
work for insurance?

2. (Systematic Component) X.A is called the linear predictor, or η.

3. (Link function) The expected value of Y, E(Y), is equal to g-1(η).

For example, say we pick the log-link, or g(x) = ln(x)

g( E(Y) ) = η = ln( E(Y) )
or

E(Y) = e(η)

If η is an additive combination of x1a1 + x2a2, we get…
E(Y) = e(η) = e(x1a1+x2a2) = e(x1a1) e(x2a2) multiplicative!
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GLMs have the general form… Y = X.A + ε

and make the preceding assumptions.

A significant first step in modeling is choosing which link and error 
functions you will use.

After that, you are deciding the final form of your design matrix.  
In other words, which variables do you want in your model 
and how will you combine them?  This process is best done 
through an evaluative, trial and error process that combines 
both statistics and judgment.
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In Summary…

As a statistical model, GLMs allow us to have some measure of 
the noise as well as the signal.

As statistical models go, GLMs and their attending assumptions 
are flexible enough to reasonably fit real-world insurance 
situations.

While we discarded other approaches along the way, it turns out 
that many minimum bias techniques and all one-way and 
linear regression approaches are just special forms of GLMs.

GLMs are multivariate and automatically solve the “double 
counting” problem presented by correlated variables.  They 
also allow for many model forms, including interactions.
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Other Multivariate Techniques

While GLM’s appear to be the current industry standard, there 
are other multivariate techniques.  These include…

Decision Trees (CART, C5, CHAID, etc.)

Neural Networks

Polynomial Networks

Clustering

Kernels

Others…


