

Agenda

- 1. The Problem
- 2. The Approach
- 3. Results and Conclusions

G Swiss Re

The Problem

- Very often in actuarial practice we need to estimate the distribution of the aggregate losses
- This is especially important for QS Reinsurance treaties with aggregate features (Loss Ratio Cap, Annual Aggregate Deductible, Loss Corridor, etc.)
- However, in practice, there is little data available to construct a separate frequency / severity model, and only the first two moments of the historical loss distributions might be available
- $\mbox{So:}$ what shape of the Aggregate Loss Distribution should one assume to achieve the best results of the approximation?
- Does the answer to the prior question depend on the size of the book or line of business?

G Swiss Re

2

The Approach - General Idea

- 1. Create a (very) large sample of plausible annual aggregate losses
- 2. Fit different probability distributions to the sample
- $\label{eq:compare} \textbf{3. Test the goodness-of-fit and compare}$

🗑 Swiss Re

The Approach - Details

- 1. Choose frequency and severity distributions
- 2. Simulate the number of claims (N) and individual claim amounts (X_l) , put the individual loss amounts into per-occurrence layers $(X_l^1, ..., X_n^l)$, and calculate the corresponding aggregate loss $(S^l = \sum_{i=1}^{N} X_i^l)$ in each layer l
- 3. Repeat many times (50,000) to obtain a sample of aggregate loss in each layer l
- Estimate the parameters of different (candidate) probability distributions for each layer l
- 5. Test the goodness of fit of the distributions and compare results

G Swiss Re

The Approach

- 1. Choose frequency and severity distributions
- 2. Simulate the number of claims (*N*) and individual claim amounts (*X_i*), put the individual loss amounts into per-occurrence layers (*X^l₁*, ..., *X^l_N*), and calculate the corresponding aggregate loss (*S^l* =
- $\sum_{i=1}^{N} X_{i}^{l}$) in each layer l
- 2. Repeat many times (50,000) to obtain a sample of aggregate loss in each layer l
- Estimate the parameters of different candidate probability distributions for each layer l
- 5. Test the goodness of fit of the distributions and compare results

🗑 Swiss Re

8

G Swiss Re

The Approach

- 1. Choose frequency and severity distributions
- 2. Simulate the number of claims (N) and individual claim amounts (X_i) , put the individual loss amounts into per-occurrence layers $(X_1^l,\ldots,X_N^l),$ and calculate the corresponding aggregate loss ($S^l=$
- $\sum_{l=1}^{N} X_{l}^{l} \text{ in each layer } l$ 3. Repeat many times (50,000) to obtain a sample of aggregate loss in each layer l
- 4. Estimate the parameters of different candidate probability distributions for each layer l
- 5. Test the goodness of fit of the distributions and compare results

10

11

G Swiss Re

Simulation Methods

- 1. Latin Hypercube Sampling for Poisson frequency
- 2. Latin Hypercube Sampling, or
- For Mixed Exponential and Lognormal severity
- Bootstrapping
- Used for simulation of severity from the property loss submissions
- Without replacement

G Swiss Re

The Approach

- 1. Choose frequency and severity distributions
- 2. Simulate the number of claims (N) and individual claim amounts (X_i) , put the individual loss amounts into per-occurrence layers $(X_1^l, ..., X_N^l)$, and calculate the corresponding aggregate loss $(S^l = \sum_{i=1}^N X_i^l)$ in each layer l
- 2. Repeat many times (50,000) to obtain a sample of aggregate loss in each layer l
- 4. Estimate the parameters of different candidate probability
- distributions for each layer *l* 5. Test the goodness of fit of the distributions and compare results

Swiss Re

Candidate Aggregate Loss Distributions

• Two-parameter distributions, as observed data is often too sparse to reliably estimate more than two parameters:

13

14

- Normal
- Logistic
- Gamma
- Inverse Gauss
- Lognormal

Swiss Re

Candida	te Aggrega	ate Loss Distribution	6	
Distribution	Parameters	Probability Density Function	Mean	Variance
Normal	μ - location $\sigma > 0$ - scale	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
Logistic	μ - location $s > 0$ - scale	$\frac{e^{-(x-\mu)/s}}{s\left(1+e^{-(x-\mu)/s}\right)^2}$	μ	$\frac{s^2\pi^2}{3}$
Gamma	$\alpha > 0$ - shape $\beta > 0$ - rate	$rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$
Inverse Gauss	$\mu > 0$ - location $\lambda > 0$ - shape	$\left[\frac{\lambda}{2\pi x^3}\right]^{1/2} \exp\left\{\frac{-\lambda (x-\mu)^2}{2\mu^2 x}\right\}$	μ	$\frac{\mu^3}{\lambda}$
Lognormal	μ - scale $\sigma > 0$ - shape	$\tfrac{1}{x} \cdot \tfrac{1}{\sigma\sqrt{2\pi}} \exp\bigl\{ - \tfrac{(\ln x - \mu)^2}{2\sigma^2} \bigr\}$	$e^{(\mu+\sigma^2/2)}$	$e^{\left(2\mu+\sigma^2\right)}(e^{\sigma^2}-1)$
Swiss Re				

Distribution	CV	Skewness	Ex. Kurtosis
Normal	С	0	0
Logistic	С	0	1.2
Gamma	с	2c	6 <i>c</i> ²
Inverse Gauss	С	3 <i>c</i>	15 <i>c</i> ²
Lognormal	С	$c + c^{3}$	$16c^2 + 15c^4 + 6c^6 + c^8$

Parameter Estimation Method of Moments G Swiss Re 17

The Approach

- 1. Choose frequency and severity distributions
- 2. Simulate the number of claims (N) and individual claim amounts (X_i) , put the individual loss amounts into per-occurrence layers (x_l), put the minimum uses amounts into per-occurrence layers $(X_1^l, ..., X_N^l)$, and calculate the corresponding aggregate loss $(S^l = \sum_{l=1}^N X_l^l)$ in each layer l3. Repeat many times (50,000) to obtain a sample of aggregate loss in each layer l

- 4. Estimate the parameters of different candidate probability distributions for each layer *l* 5. Test the goodness of fit of the distributions and compare results

G Swiss Re

Percentile Matching Test

- Compares the survival functions $Prob\{X>x\}$ of the simulated aggregate loss distribution with fitted probability distributions

19

20

Allows us to compare distributions in their tails

🗑 Swiss Re

Excess Expected Loss Cost Test

- Compares the conditional means of distributions in excess of different amounts, $E[X-x|X>x]*Prob\{X>x\}$
- Important for Aggregate Stop Loss Coverage and Aggregate Deductible Coverage (AAD)

🗑 Swiss Re

Conclusions

Gamma distribution provides a fit that is almost always the best for both ground up and excess layers (out of the five candidate distributions considered)

Gamma distribution provides a uniformly reasonable approximation to the aggregate loss on the interval from the mean to at least two means of the aggregate distribution

28

Swiss Re

Thank you! ⊕ Swis≅

