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Agenda

1. Loss Development in Reinsurance Pricing

2. Bayesian Theory and Mathematics (optional)

3. Practical Implementation
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Loss Development Blending

Reinsurance pricing problem:

We have a loss development triangle from our client:

• May be sparse, not fully credible

• No tail beyond latest age in triangle

We have “benchmark” pattern from other sources:

 ISO / RAA / Reserving / Peer Companies

 Uncertain estimation and relevance for this client
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Loss Development Blending
(numbers for illustration only)
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Single Benchmark Example

12 24 36 48 60 72 84 96

1990 73 262 469 528 536 591 604 606
1991 148 346 391 502 522 514 567
1992 99 198 219 394 408 430
1993 118 255 352 412 581
1994 275 415 645 803
1995 261 446 637
1996 130 471
1997 148

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult
1990 3.589 1.790 1.126 1.015 1.103 1.022 1.003
1991 2.338 1.130 1.284 1.040 0.985 1.103
1992 2.000 1.106 1.799 1.036 1.054
1993 2.161 1.380 1.170 1.410
1994 1.509 1.554 1.245
1995 1.709 1.428
1996 3.623

Col. 1 1,104 1,922 2,076 1,836 1,466 1,105 604
Col. 2 2,393 2,713 2,639 2,047 1,535 1,171 606

Avg ATA 2.168 1.412 1.271 1.115 1.047 1.060 1.003



Bayesian Philosophy

“The Bayesian paradigm offers a formal mechanism for incorporating into one's 
analysis information not contained in the available data.”

- Zhang, Dukic & Guszcza (2012)

“…the prior probability distributions in Bayesian inference provide a powerful 
mechanism for incorporating information from previous studies, and for controlling 
confounding.”

- Dong & Chan (2013)
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Bayesian Philosophy

Bayes’ Theorem:

This formula has three components:

A distribution representing “prior” knowledge of the parameters 

A likelihood function representing the probability of observing the actual 
data X given a certain parameter set.

The “posterior” probability of the parameters, revised based on the data
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Bayesian Philosophy

Good News:   Bayesian model allows us to incorporate expert judgment or prior 
knowledge in a coherent way.

Bad News:     Bayesian model requires us to set up explicit statistical distributions 
to incorporate this prior knowledge.

If  is a parameter vector (e.g. a set of ten age-to-age factors),

Then () is a ten-dimensional probability density function.

And this requires evaluating a ten-dimensional integral:
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Bayesian Philosophy

Tools for Evaluating the Mathematics:

1) Conjugate Families

2) Linear Approximation to Bayes Formula => Bühlmann-Straub

3) Numerical Approximation of the Formula

a) Quadrature integration (old method)

b) Simulation via MCMC (the new favorite)

Conjugate family has advantage of simple calculation and interpretability.
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Conjugate Prior

When the prior distribution ߨ ߠ and likelihood ݂ ߠ|ܺ are chosen such that the 
posterior distribution ߨ ܺ|ߠ has the same distribution form as the prior, then we 
have a conjugate relationship.

Common examples from the Exponential Family are:

ߨ ߠ =>   ݂ ߠ|ܺ

Gamma  =>  Poisson

Beta       =>  Binomial

For the loss development pattern problem, we need a multivariate conjugate 
relationship.

Dirichlet =>  Multinomial
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Dirichlet Distribution

The Dirichlet distribution is a multivariate version of the beta distribution.

Instead of a yes/no probability of  or 1 െ  ,

we have a vector of probabilities  ଵ, ,ଶ ⋯,ଷ ,  .

We can view this as a simulation of “k” gamma random variables, with a common 
scale parameter, which are then turned into percentages.
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Dirichlet Distribution
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Dirichlet Distribution

The Dirichlet distribution gives us a prior pattern that matches the percents paid (or 
reported) in each incremental period.  The increments are proportional to the αj

parameters.

Given a new observed pattern from the client data, the “posterior” distribution 
simply adds a value to update the Dirichlet parameters.

However, this assumes we have a complete pattern from the client.

We do not; we have a series of incomplete patterns.
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Generalized Dirichlet Distribution

The Generalized Dirichlet distribution (Wong 1998) solves this challenge of 
incomplete data for us.

The Generalized form has twice as many parameters, but accommodates the 
incomplete data.  Conveniently, this is also a conjugate form – meaning that the 
posterior distribution is again Generalized Dirichlet, with adjusted parameters.

The ߙ’s are incremental losses, the ߚ’s are cumulative losses.

,ଵߙ ,ଶߙ ⋯,ଷߙ , ,ߙ ,ଵߚ ,ଶߚ ⋯,ଷߚ , ߚ

This has the remarkable interpretation that  1  ఈೕ
ఉೕ ୀଵ


is the sequence of age-to-

age factors.
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Credibility Blending Formula

In addition to the uncertainty in the “prior” benchmark pattern, we need a measure 
of the process variance in the client triangle.

This is incorporated via a “dispersion” or variance/mean parameter ᶲ.  Equivalent 
to the factor used in GLM or Bootstrapping for chain ladder.

	ܭ	ݕݐ݈ܾ݅݅݅݀݁ݎܥ ൌ 		
݁ܿ݊ܽ݅ݎܸܽ	ݏݏ݁ܿݎܲ	݀݁ݐܿ݁ݔܧ

ݏ݊ܽ݁ܯ	݈ܽܿ݅ݐ݄݁ݐݕܪ	݂	݁ܿ݊ܽ݅ݎܸܽ

In the N/(N+K) formula, the “K” acts as ballast.   It can be interpreted as counts or 
dollars depending upon the application.
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Estimate of Process Variance/Mean Parameter
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The selection of the scale parameter can be taken from a collective risk model.

Table M for Workers’ Compensation is one example.

This parameter can also vary by layer and line of business as needed.

  Theoretical "Table M" (for illustration)
Gamma 
Shape 

Parameter

Insurance 
Charge at 
Entry=1

Expected 
Loss Group

Aggregate 
Loss Size 
(example)

Implied 
Variance/Mean

0.5 0.484 48 360,000        720,000            
1 0.368 37 1,000,000     1,000,000         

1.5 0.308 31 2,000,000     1,333,333         
2 0.271 27 3,750,000     1,875,000         



Credibility Blending Formula

Bayesian Combinations:
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Credibility Blending Formula

The credibility blending becomes a simple dollar-weighted average.

If you can calculate an age-to-age factor, then you can do a Bayesian model!
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  Example of Blending Client and Benchmark Patterns
12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult

ATA from Triangle
Col. 1 1,104      1,922     2,076     1,836     1,466     1,105     604        -         
Col. 2 2,393      2,713     2,639     2,047     1,535     1,171     606        -         
ATA 2.168 1.412 1.271 1.115 1.047 1.060 1.003

Benchmark Pattern
Col. 1 1,419      2,027     2,546     2,933     3,383     3,633     3,717     3,042     
Col. 2 4,000      4,000     4,000     4,000     4,000     4,000     4,000     4,000     
ATA 2.819 1.973 1.571 1.364 1.182 1.101 1.076 1.315

Blended Pattern
Col. 1 2,523      3,949     4,622     4,769     4,849     4,738     4,321     3,042     
Col. 2 6,393      6,713     6,639     6,047     5,535     5,171     4,606     4,000     
ATA 2.534 1.700 1.436 1.268 1.141 1.091 1.066 1.315



Credibility Blending – Value of Conjugate Priors

“Conjugate priors… have the desirable feature that prior information can be viewed 
as ‘fictitious sample information’ in that it is combined with the sample in exactly the 
same way that additional sample information would be combined.

“The only difference is that the prior information is ‘observed’ in the mind of the 
researcher, not in the real world.”

- Bayesian Econometric Methods; Koop, Poirier & Tobias
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Creation of an Informative Prior

How do we create the prior distribution ߨ ߠ ?

1) Empirical Bayes - estimate from collection of available patterns

2) Elicit ranges from expert users:  e.g., select slow/medium/fast patterns

3) Reverse engineer – what prior is implied by the credibility percents that have 
been applied by users on actual accounts?

Different form for pricing and reserving actuaries?
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Sources of Variance in the Prior

1) Market Heterogeneity

“…the market experience is not fully relevant to a particular client. This is usually 
captured by the spread, or heterogeneity, of the client risk premiums around the 
standard market rate.”

2) Estimation Uncertainty

“…although the market rate is typically computed from a larger data set than that 
of a client, it, too, is based on a loss database of limited size and is therefore 
affected by the same type of uncertainty.”

- Parodi & Bonche

“Uncertainty-Based Credibility and its Applications” Variance 2010

21



Estimate from collection of available patterns
Products Liability
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Extending the Model
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We can extend this model further by including mixtures of prior distributions.

Perhaps we know that companies are naturally grouped into Fast, Medium, or Slow 
payment patterns.  But we do not know to which group our client belongs.

  Cumulative Loss Development Factors
12 24 36 48 60 72 84 96

Fast 14.014 4.930 2.607 1.759 1.406 1.263 1.191 1.155

Medium 21.950 7.787 3.946 2.512 1.842 1.558 1.415 1.315

Slow 49.240 15.860 7.407 4.163 2.706 2.057 1.750 1.567



Extending the Model
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We assign initial weights to each of the groupings (perhaps 33%/33%/33%) and then 
apply Bayes’ theorem to update the weights.

This allows us to adjust our “tail” based on which group is closest to our client’s data.

  Bayesian Updating of Probabilities

Difference Relative Original Revised
LogLikelihood in LL Likelihood Weights Weights

A B=A-Max(A) C=exp(B) D E=C*D/Avg( C )

Slow -4.61 -0.77 0.464 33.33% 20.41%
Baseline -4.06 -0.21 0.810 33.33% 35.61%
Fast -3.84 0.00 1.000 33.33% 43.98%

0.758 100.00% 100.00%



Conclusions

• Credibility in Loss Development pattern selection has benefits

• Stability in estimation – therefore can break data into small homogeneous 
pieces

• Consistency in pricing

• Even very sparse data from a client can update the benchmark

• The Bayesian framework can be implemented practically for pricing

• The Bayesian framework can be extended to include benchmarks for every 
uncertain parameter
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