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Overview

 Collective Risk Model (CRM) for multiple lines of business with correlation. 

 Well-Trodden Ground:
 Wang
 Meyers and Collaborators 
 Mildenhall
 Homer-Rosengarten
 Many Others

 Correlation: By common shock method as found in several of the 
references above – with a twist.

 Along the way point out some underappreciated aspects of CRM.

 Actually parameterizing simulation method consistent with the model.
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Overview

 Requirements:

 Efficient as to runtime.

 Efficient as to parameterization – relativity low number of parameters, 

 Simulate small and large losses – and reflect the appropriate dependency.  
Generate individual large losses and small losses in the aggregate.

 Reflect correlation between lines/years.

 Consistent with underlying CRM.   
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CRM - Setup
 CV: For any random variable ܻ, the coefficient of variation, or CV is 

 ࣇ ܻ ൌ 	 ݎܸܽ ܻ ܧ ܻൗ

 CV is unit-less, makes for nice formulas.

 Collective Risk Model, 
 ܼ ൌ ଵܺ  ⋯ܺே , ܺ 	݅݅݀, ܺ, ܰ	independent. 

 Where ܼ ൌ	aggregate losses, ܺ ൌ severity, and the random variable ܰ
is the claim count, or “frequency”

 Independence of ܺ,ܰ	could be violated by inhomogeneous data.

 Large/Small Losses – Threshold ܶ such that (severity) losses  ܶ are 
“large”, losses ൏ ܶ are “small”.
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CRM – Contagion Factor, Moments
 Induced CRMs
 ܼ ൌ ଵܺ,  ⋯ܺே,, ܼௌ ൌ ଵܺ,ௌ  ⋯ܺே,ௌ

 Contagion Parameter – Set ܿ ൌ ଶࣇ ܰ െ 1 ܧ ܰ⁄ .  Then ܿ is invariant in 
the sense ܿ ൌ ܿ ൌ ܿௌ (follows from independence if ܺ,ܰ)

 Assume ܿ  0 (positive contagion).

 Moments of CRM:
 ܧ ܼ ൌ ܧ ܰ ܧ ܺ

 ࣇ ܼ ൌ ଶࣇ ܺ  1 ܧ ܰ⁄  ܿ

 It follows that ࣇ ܼ → ܿ	as ܧ ܰ → 	∞
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CRM – Large, Small, Total Losses

 Correlation: 

࣋ ܼௌ, ܼ ൌ ܿ ࣇ ܼௌ ࣇ ܼ⁄
(common shock based on identical mixing distributions)

 Total Variation: 

ଶܧ ܼ ଶࣇ ܼ െ ܿ ൌ ଶܧ ܼ ଶࣇ ܼ െ ܿ  ଶܧ ܼௌ ଶࣇ ܼௌ െ ܿ .
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CV Interval
 Interval for ࣇ ࢆ 	: 

	 ܿ  ಶమ ೋಽ
ಶమ ೋ

మࣇ ಽ ି  ࣇ ܼ  ܿ  ಶమ ೋಽ
ಶమ ೋ

మࣇ ಽ ି  
ಶ ೋ ଵିಶ ೋಽ

ಶ ೋ (*)

ܿ  ࣇ ܼௌ  ܿ  ்
ா ೄ

 Inequality is sharp.

 Proof : Dividing the total variation equation by ܧଶ ܼ immediately gives 
the left-hand inequality in (*).  

To prove the right-hand side, must show that
ாమ ೄ
ாమ 

ଶߥ ܼௌ െ ܿ  ்
ா 

1 െ ಶ ೋಽ
ಶ ೋ , which reduces to  

ଶߥ ܼௌ െ ܿ  ்
ா ೄ
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CV Interval
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We use the following:

Fact: If ܻ is a non-negative random variable with support on 0, ܶ 	,then
ݎܸܽ ܻ  ܧ ܻ ܶ െ ܧ ܻ .

Proof of Fact:
்మ

ସ
 ܧ ்

ଶ
െ ܻ

ଶ
ൌ ்మ

ସ
െ ܧܶ ܻ  ܧ ܻଶ ൌ ்మ

ସ
െ ܧܶ ܻ  ଶܧ ܻ  ݎܸܽ ܻ , which 

gives the result.

Using fact: 
ଶߥ ௌܼ െ ܿ ൌ ா ೄమ

ா ேೄ ாమ ೄ
ൌ ଵ

ா ேೄ
1   ೄ

ாమ ೄ
 ଵ

ா ேೄ
1  ா ೄ ்ିா ೄ

ாమ ೄ

ൌ ்
ா ேೄ ா ೄ

ൌ ்
ா ೄ

, as required.
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CV Interval

For sharpness note that if we hold ܧ ܼௌ fixed while letting ܧ ௌܰ → ∞, 

then ߥଶ ܼௌ → ܿ, so that ߥ ܼ → ܿ  ಶమ ೋಽ
ಶమ ೋ

ఔమ ಽ ି , which is the left-hand 

side of (*).  Furthermore if we take ௌܺ to be a 2-point distribution with 
masses at ௌܺ ൌ 0 and 	 ௌܺൌ ܶ (with probability  ൌ ா ೄ

ா ேೄ ்
), then equality 

holds for the right-hand side of (*).  
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Mixed Poisson CRM 
 We now assume that the claim count r.v ܰ is of mixed Poisson type, 

meaning ܰ~ܲ݊ݏݏ݅ ܧ ܰ ܩ , where ܩ is a r.v with mean 1.

 To draw from ܰ:
 1. Draw ݃ from ܩ.
 2. Draw from ܲ݊ݏݏ݅ ܧ ܰ ݃ .

 ݎܸܽ ܩ ൌ ܿ.  Will use the notation ܩ ܿ

 ܰ, ௌܰ are also mixed Poisson with the same mixing distribution .ܩ

 Example: ܩ~݃ܽ݉݉ܽ.  Then ܰ~ܰ݁݃ܽ݁ݒ݅ݐ	݈ܽ݅݉݊݅ܤ.

 Fact (“Severity is Irrelevant”): ܼ ܧ ܼ

→⁄ ܧ	ݏܽ	ܩ ܰ → ∞
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Simulation Method - CAD Algorithm with Frequency, 
“Severity” and Serial Common Shock

 Ref:Homer-Rosengarten (2011), Meyers-Klinker-LaLonde (2003)

 Full Info CAD (Have ܰ, ܺ)
 Draw from ܰ (i.e. draw from ܩ and then from ܲ݊ݏݏ݅ ܧ ܰ ܩ )
 Draw ܰ 	from ݊݅ܤ ܰ, ݍ , where ݍ ൌ 1 െ CDF ܶ .	 ௌܰൌ ܰ െ ܰ.
 Draw ଵܺ,, … , ܺே, large losses. ܼ ൌ ଵܺ,  ⋯ܺே,
 Draw ܼௌ෪	from Conditional Aggregate Distribution (eg, lognormal) 

matching	݇  2 moments of	ܼௌ| ௌܰ.
 ෨ܼ ൌ ܼௌ෪  ܼ

 H-R Paper: 	෩ܼ ܧ ܼ⁄ , ܼௌ෪ ܧ 	ܼௌ⁄ ሺܼ ܧ ܼ⁄ ሻ
ୈ
 This generalizes the  .ܩ→

“severity is irrelevant” result.  Also, the method generates the correct 
dependence between large and small losses
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Simulation Method
 Limited Info CAD (Don’t have ܰ, ܺ)

 Draw from ܩ only.
 Draw ܰ from ܲ݊ݏݏ݅ ܧ ܰ ܩ
 Draw large losses as previously. 
 Draw ܼௌ෪	from CAD matching first two moments of	ܼௌ|ܩ

 Minimum Parameterization: ܩ ܿ , ܧ ܰ , ܺ, ܧ ܼ , ࣇ ܼ

 Can then eliminate severity, ௌܰ from equations for first two moments of 
	ܼௌ|ܩ.

 To wit, ܧ 	ܼௌ|ܩ ൌ ܧܩ 	ܼௌ ࣇ , 	ܼௌ|ܩ ൌ ଶࣇ 	ܼௌ െ ܿ ⁄ܩ

 But, it is not automatic that this minimal parameterization is consistent 
with CRM
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Simulation Method

 To address, suppose we have all the minimal parameters except ࣇ ܼ .  
We can then evaluate the lhs and rhs of inequality (*) 

ܿ  ாమ ಽ
ாమ  మࣇ ಽ ି  ࣇ ܼ  ܿ  ாమ ಽ

ாమ  మࣇ ಽ ି  ்
ா  ଵିா ಽ

ா 

 Any choice for ࣇ ܼ within this interval is a) possible and b) consistent 
with MP CRM.
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Beginning of Example – R2 Ins Co.

Loss Parameters

Non-Cat
LoB Premium E(Z) Loss Ratio (Z) T c E(NL) E(ZL) XL (ZL) E(ZS) (ZS)

GL 110,000,000 65,000,000 59.1% 0.2000 1,000,000 0.03 3.500 5,457,138 Empirical 0.7349 59,542,862 0.1940 

WC 90,000,000 45,000,000 50.0% 0.2200 1,000,000 0.02 3.000 6,568,231 Empirical 0.7604 38,431,769 0.2065 

CAL 40,000,000 22,000,000 55.0% 0.2750 1,000,000 0.04 0.250 512,500 Empirical 3.2929 21,487,500 0.2668 

Umb 9,000,000 6,500,000 72.2% 0.5200 1,000,000 0.02 3.000 4,248,825 Empirical 0.7444 2,251,175 0.4525 

PropNon-Cat 300,000,000 175,000,000 58.3% 0.1600 1,000,000 0.02 14.000 30,534,169 Empirical 0.3734 144,465,831 0.1513 

Total Non-Cat 549,000,000 313,500,000 57.10% 0.1139 23.750 47,320,864 0.2877 266,179,136 0.1096 
Cat

SmallCat 549,000,000 40,000,000 7.3% 0.4300 2,000,000 0.16 10.000 4,000,000 Lognormal 0.4300 - -

MajorCat (Net) 549,000,000 25,000,000 4.6% 1.9000 Inf 1.00 - - N\A - 25,000,000 1.9000 

Total Inc Cat 549,000,000 378,500,000 68.94% 0.1685 33.750 51,320,864 0.2847 291,179,136 0.195
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R2 Ins Co. – Mean, CV Parameters
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Common Shock Correlation

 Correlate LoBs modeled with MP CRM/CAD method.

 LoBs are organized into covariance groups.  Only Lobs within the 
same covariance group co-vary with one another.

 Frequency, “severity”, and serial common shock.
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Frequency Common Shock

 General Idea: Common draw from mixing distribution.

 Need to allow that LoBs might have different mixing distributions.

 Solution is draw common uniforms and use these to invert the mixing 
distributions (݃ ൌ ଵିܨீ ݑ ).

 Remaining problem is that this will tend to generate very high 
correlation.

 Usual solution is to assume that ܩ is an independent product, ie
 ܩ ܿ ൌ ଵܩ ܿଵ ଶܩ ܿଶ
 Then apply common shock only to ܩଵ.
 Note that ܿ ൌ ܿଵ  ܿଶ  ܿଵܿଶ
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Frequency Common Shock

 Variant is the “twisted product” ܩ ܿ ൌ ଵܩ ܿଵ ⋉ ଶܩ ܿଶ 	defined by 
ܩ ൌ ଶܩଵܩ ܿଶ/ܩଵ .

 That is, to draw from ܩ:
 Draw ݃ଵ from ܩଵ.
 Draw ݃ଶ from ଶܩ ܿଶ/݃ଵ .
 ݃ ൌ ݃ଵ݃ଶ.

 Nice thing about twisted product is ܿ ൌ ܿଵ  ܿଶ.

 Parameter: FrCoVarWt ൌ ,ݓ 0  ݓ  1.  Varies by LoB.

 In twisted product set ܿଵ ൌ ,ܿݓ ܿଶ ൌ 1 െ ݓ ܿ	(where ܩ 0 ≡ 1).
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Serial Common Shock

 Bring in uniforms necessary to invert ܩଵ’s for frequency c.s. These vary by 
covariance group and year.

 Also bring in uniforms for ܩଶ’s – varying by LoB and year.

 Reason for ܩଶ’s is generate sufficient correlation between years but within 
LoB.

 Flip a weighted coin.  

 For year ݆, ݆  2, if coin flip comes up “heads” use the uniforms from year 
݆ െ 1.  Otherwise use year ݆.

 Parameter – FrSerialCoVarWt – the weight for the coin flip.  Can vary by 
covariance group or LoB.  Usually by covariance group.
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Serial Common Shock

 Summary
 .correlates non-identical LoBs, both within-year and serially	ଵܩ

 ଶܩ - serial correlation for identical LoBs.

 Serial correlation decays by FrSerialCoVarWt.
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“Severity” Common Shock

 Really it’s c.s. applied to the conditional aggregate distribution generating 
ܼௌ෪	.

 By H-R, the particular distribution family used doesn’t matter.

 Assume lognormal, with ݑܯ, ܵ݅݃݉ܽ	the conditional parameters.

 Parameters:  ZSCoVarWt, ZSSerialCoVarWt.

 Express CAD as a product of Lognormals

 ܦܣܥ ൌ logn ,ݑܯ5. ܵ݅݃݉ܽ ݐܹݎܽݒܥܼܵ logn ,ݑܯ5. ܵ݅݃݉ܽ 1 െ ݐܹݎܽݒܥܼܵ

 Play same game as previously.
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Why do we need ZSCoVarWt?
 Example: Identical LoBs LoB1, LoB2
 ݐܹݎܸܽܥݎܨ ൌ ݐܹݎܸܽܥܼܵ ,85. ൌ ଵܩ ,0 ൌ 1 േ ܿ, with probabiltiy .5.
 ܿ ൌ ܱ ଶࣇ - High Correlation ܿ ൌ 0	 ଶࣇ ≫ ܿ - No Correlation
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LoB1, LoB2 Joint Distrbution
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Why ZSCoVarWt?

 ݐܹݎܸܽܥݎܨ ൌ ݐܹݎܸܽܥܼܵ ,0 ൌ .85, ܿ ൌ 0
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LoB1, LoB2 Joint Distrbution
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Why ZSCoVarWt?

 For Identical LoBs:
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FrCoVarWt=1
ZSCoVarWt=0

FrCoVarWt=0
ZSCoVarWt=1

ૅଶ → ܿ ૉ → 1 ૉ → 0

ૅଶ ≫ ܿ ૉ → 0 ૉ → 1
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More Tricks

 Can increase skewness by adding shift to mixing distributions.

 Shifted lognormal: ܩ ൌ ݏ  ݊݃ܮ ݈݊ భషೞ మ

శ భషೞ మ
, ݈݊ 1  

భషೞ మ

 Skewness ൌ 
భషೞ 3  

భషೞ మ

 Can use discrete mixing distribution to create a mass at 0, for example.

towerswatson.com
© 2013 Towers Watson. All rights reserved.



Proprietary and Confidential. For Towers Watson and Towers Watson client use only. 

R2 Ins Co. – Correlation Parameters, Mixing Distributions
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R2 Ins Co. – Correlation Parameters, Mixing Distributions

 Casualty lines co-vary. (Covariance group 1)

 Non-Cat Property, Cats are independent (CoVar groups 2-4).

 Mixing Distributions all of form G ൌ ݈݊݃ ⋉ ݈݊݃ except Major Cat

 Major Cat (Net of Cat XoL)
 From Cat modelling know ܾܲݎ 0 , ܧ ݐܽܥ	ݎ݆ܽܯ , ,ࣇ γ ൌ .ݏݏ݁݊ݓ݁݇ݏ
 Modeling Solution: G ൌ ݉ݎ݂ܷ݅݊	݁ݐ݁ݎܿݏ݅ܦ ∗ ݈݊݃	ݐ݂݄݅ݏ , ܿ ൌ 1
 Parameters of Discrete Uniform (inluding ܿଵ ൌ  set up to match	ሻݐܹݎܸܽܥݎܨ

probability mass at 0.
 Shifted lognormal set up to match skewness.

 Umbrella: parameters set up to give higher correlation with GL than 
other casualty lines. 
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Correlation Matrix
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Reinsurance Cover for R2 Insurance Co.

 Aggregate Stop-Loss – Term: 2 years

 Subject Losses: 
 100% of Non-Cat losses limited to $1݉	per risk
 50% of $1݉	ݏݔ	1݉$	per risk
 100% of Cat losses limited to 20% of Subject Premium ሺ$549݉) per year.

 Subject Loss Ratio: 64.5%

 Coverage: 15%	ݏݔ	75% of SP

 Premium: 5% of SP (33% RoL), 30% of which is margin, the remainder to 
an experience account.

 Profit Commission: 100% of residual EA
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Reinsurance Cover Results

 NPV basis (Have also developed payout patterns by LoB).

 Low parameter model allows for efficient sensitivity testing.

 Key Stats (Reinsurer PoV):
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Key Stats w\Sensitivity Testing

Base c's, CVs Up CoVar Wts Up Skewness Up

NPV(Profit/Loss) 12,851,332 9,773,105 12,281,670 12,776,752 

Prob(Econ. Loss) 11.59% 17.51% 12.32% 11.73%

TVaR(95) (35,406,559) (50,849,025) (41,391,711) (35,944,163)

TVaR(97.5) (47,754,569) (66,138,266) (56,187,593) (48,446,883)

RoRaC(95) 9.46% 6.00% 8.08% 9.34%

RoRaC(97.5) 7.53% 5.08% 6.48% 7.45%

ERD -4.40% -8.00% -5.23% -4.52%


