

*R*² Richard Rosengarten _{6/7/2013}

Overview

- Collective Risk Model (CRM) for multiple lines of business with correlation.
- Well-Trodden Ground:
 - Wang

- Meyers and Collaborators
- Mildenhall
- Homer-Rosengarten
- Many Others
- Correlation: By common shock method as found in several of the references above with a twist.
- Along the way point out some underappreciated aspects of CRM.
- Actually parameterizing simulation *method* consistent with the *model*.

Overview

- Requirements:
 - Efficient as to runtime.
 - Efficient as to parameterization relativity low number of parameters,
 - Simulate small and large losses and reflect the appropriate dependency.
 Generate individual large losses and small losses in the aggregate.
 - Reflect **correlation** between lines/years.
 - **Consistent** with underlying CRM.

CRM - Setup

- CV: For any random variable *Y*, the **coefficient of variation**, or CV is
 - $\mathbf{v}(Y) = \sqrt{Var(Y)}/E(Y)$
- CV is unit-less, makes for nice formulas.
- Collective Risk Model,
 - $Z = X_1 + \dots + X_N$, X_i *iid*, X, N independent.
- Where *Z* = aggregate losses, *X* = severity, and the random variable *N* is the claim count, or "frequency"
- Independence of *X*, *N* could be violated by inhomogeneous data.
- Large/Small Losses Threshold T such that (severity) losses $\geq T$ are "large", losses < T are "small".

CRM – Contagion Factor, Moments

- Induced CRMs
 - $Z_L = X_{1,L} + \dots + X_{N,L}, Z_S = X_{1,S} + \dots + X_{N,S}$
- Contagion Parameter Set $c = v^2(N) 1/E(N)$. Then *c* is invariant in the sense $c = c_L = c_S$ (follows from independence if *X*, *N*)
- Assume c > 0 (positive contagion).
- Moments of CRM:

- E(Z) = E(N)E(X)
- $\nu(Z) = \sqrt{(\nu^2(X) + 1)/E(N) + c}$
- It follows that $\nu(Z) \to \sqrt{c}$ as $E(N) \to \infty$

CRM – Large, Small, Total Losses

• Correlation:

$$\boldsymbol{\rho}(Z_S, Z_L) = c / (\boldsymbol{\nu}(Z_S)\boldsymbol{\nu}(Z_L))$$

(common shock based on identical mixing distributions)

• Total Variation:

$$E^{2}(Z)(\mathbf{\nu}^{2}(Z)-c) = E^{2}(Z_{L})(\mathbf{\nu}^{2}(Z_{L})-c) + E^{2}(Z_{S})(\mathbf{\nu}^{2}(Z_{S})-c).$$

CV Interval

• Interval for $\nu(Z)$:

$$\sqrt{c + \frac{E^2(Z_L)}{E^2(Z)}} (\nu^2(Z_L) - c) \le \nu(Z) \le \sqrt{c + \frac{E^2(Z_L)}{E^2(Z)}} (\nu^2(Z_L) - c) + \frac{T}{E(Z)} \left(1 - \frac{E(Z_L)}{E(Z)}\right) \quad (*)$$

$$\sqrt{c} \le \nu(Z_S) \le \sqrt{c + \frac{T}{E(Z_S)}}$$

Inequality is sharp.

towerswatson com

• **Proof :** Dividing the total variation equation by $E^2(Z)$ immediately gives the left-hand inequality in (*).

To prove the right-hand side, must show that

$$\frac{E^2(Z_S)}{E^2(Z)}(\nu^2(Z_S) - c) \le \frac{T}{E(Z)}\left(1 - \frac{E(Z_L)}{E(Z)}\right), \text{ which reduces to}$$
$$(\nu^2(Z_S) - c) \le \frac{T}{E(Z_S)}$$

CV Interval

We use the following:

Fact: If *Y* is a non-negative random variable with support on [0, T], then $Var(Y) \le E(Y)(T - E(Y))$.

Proof of Fact:

$$\frac{T^2}{4} \ge E\left(\left(\frac{T}{2} - Y\right)^2\right) = \frac{T^2}{4} - TE(Y) + E(Y^2) = \frac{T^2}{4} - TE(Y) + E^2(Y) + Var(Y), \text{ which gives the result.}$$

Using fact:

$$\left(\nu^{2}(Z_{S}) - c\right) = \frac{E(X_{S}^{2})}{E(N_{S})E^{2}(X_{S})} = \frac{1}{E(N_{S})} \left(1 + \frac{Var(X_{S})}{E^{2}(X_{S})}\right) \le \frac{1}{E(N_{S})} \left(1 + \frac{E(X_{S})(T - E(X_{S}))}{E^{2}(X_{S})}\right)$$

$$=\frac{T}{E(N_S)E(X_S)}=\frac{T}{E(Z_S)}$$
, as required.

CV Interval

towerswatson com

For sharpness note that if we hold $E(Z_S)$ fixed while letting $E(N_S) \to \infty$, then $\nu^2(Z_S) \to c$, so that $\nu(Z) \to \sqrt{c + \frac{E^2(Z_L)}{E^2(Z)}}(\nu^2(Z_L)-c)$, which is the left-hand side of (*). Furthermore if we take X_S to be a 2-point distribution with masses at $X_S = 0$ and $X_S = T$ (with probability $p = \frac{E(Z_S)}{E(N_S)T}$), then equality holds for the right-hand side of (*).

Mixed Poisson CRM

- We now assume that the claim count r.v *N* is of *mixed Poisson* type, meaning *N*~*Poisson*[*E*(*N*)*G*], where *G* is a r.v with mean 1.
- To draw from *N*:

- 1. Draw *g* from *G*.
- 2. Draw from Poisson[E(N)g].
- Var(G) = c. Will use the notation G[c]
- N_L , N_S are also mixed Poisson with the same mixing distribution G.
- Example: *G*~*gamma*. Then *N*~*Negative Binomial*.
- Fact ("Severity is Irrelevant"): $Z/E(Z) \xrightarrow{D} G as E(N) \rightarrow \infty$

Simulation Method - CAD Algorithm with Frequency, "Severity" and Serial Common Shock

- Ref:Homer-Rosengarten (2011), Meyers-Klinker-LaLonde (2003)
- Full Info CAD (Have N, X)
 - Draw from N (i.e. draw from G and then from Poisson[E(N)G])
 - Draw N_L from Bin(N,q), where $q = 1 CDF_X(T)$. $N_S = N N_L$.
 - Draw $X_{1,L}$, ..., $X_{N,L}$ large losses. $Z_L = X_{1,L} + \cdots + X_{N,L}$
 - Draw $\widetilde{Z_S}$ from <u>C</u>onditional <u>Aggregate</u> <u>D</u>istribution (eg, lognormal) matching $k \ge 2$ moments of $Z_S | N_S$.
 - $\widetilde{Z} = \widetilde{Z_S} + Z_L$

towerswatson com

• H-R Paper: $\widetilde{Z}/E(Z)$, $\widetilde{Z_S}/E(Z_S)(Z_L/E(Z_L)) \xrightarrow{D} G$. This generalizes the "severity is irrelevant" result. Also, the method generates the correct dependence between large and small losses

Simulation Method

- Limited Info CAD (Don't have N, X)
 - Draw from *G* only.

- Draw N_L from $Poisson[E(N_L)G]$
- Draw large losses as previously.
- Draw $\widetilde{Z_S}$ from CAD matching first **two** moments of $Z_S | G$
- Minimum Parameterization: $G[c], E(N_L), X_L, E(Z), v(Z)$
- Can then eliminate severity, N_S from equations for first two moments of $Z_S|G$.
- To wit, $E(Z_S|G) = GE(Z_S)$, $\nu(Z_S|G) = \sqrt{(\nu^2(Z_S) c)/G}$
- But, it is not automatic that this minimal parameterization is consistent with CRM

Simulation Method

towerswatson com

• To address, suppose we have all the minimal parameters except $\nu(Z)$. We can then evaluate the lhs and rhs of inequality (*)

$$\sqrt{c + \frac{E^2(Z_L)}{E^2(Z)}(\nu^2(Z_L) - c)} \le \nu(Z) \le \sqrt{c + \frac{E^2(Z_L)}{E^2(Z)}(\nu^2(Z_L) - c) + \frac{T}{E(Z)}\left(1 - \frac{E(Z_L)}{E(Z)}\right)}$$

 Any choice for ν(Z) within this interval is a) possible and b) consistent with MP CRM.

Beginning of Example – R² Ins Co.

Loss Parameters												
Non-Cat												
LoB	Premium	E(Z)	Loss Ratio	ν(Z)	T c	E(N _L)	E(Z _I)	X _L	$\nu(\mathbf{Z}_{\mathbf{L}})$	E(Z _s)	$\nu(Z_{S})$
GL	110,000,000	65,000,000	59.1%	0.2000	1,000,000	0.03	3.500	5,457,138	Empirical	0.7349	59,542,862	0.1940
WC	90,000,000	45,000,000	50.0%	0.2200	1,000,000	0.02	3.000	6,568,231	Empirical	0.7604	38,431,769	0.2065
CAL	40,000,000	22,000,000	55.0%	0.2750	1,000,000	0.04	0.250	512,500	Empirical	3.2929	21,487,500	0.2668
Umb	9,000,000	6,500,000	72.2%	0.5200	1,000,000	0.02	3.000	4,248,825	Empirical	0.7444	2,251,175	0.4525
PropNon-Cat	300,000,000	175,000,000	58.3%	0.1600	1,000,000	0.02	14.000	30,534,169	Empirical	0.3734	144,465,831	0.1513
Total Non-Cat	549,000,000	313,500,000	57.10%	0.1139			23.750	47,320,864		0.2877	266,179,136	0.1096
SmallCat	549,000,000	40,000,000	7.3%	0.4300	2,000,000	0.16	10.000	4,000,000	Lognormal	0.4300	-	-
MajorCat (Net)	549,000,000	25,000,000	4.6%	1.9000		Inf 1.00	-		N\A	-	25,000,000	1.9000
Total Inc Cat	549,000,000	378,500,000	68.94%	0.1685			33.750	51,320,864		0.2847	291,179,136	0.195

R² Ins Co. – Mean, CV Parameters

towerswatson.com

Section C: If Model Choice a) = "Full Into"- ignore; b) = "Limited Into 1" - mean and cv of aggregate total losses; c) = "Limited Into 2" mean and cv of aggregate small losses. For case b) and c), frirst parameterize large loss CRM in Section D below. Selection is then guided by Mu Min, CV Min, and CV Max.

Moments of:	All Losses	All Losses	All Losses	All Losses	All Losses	Small Losses	All Losses
Mean Mu Min[Yr]	5,457,138		512,500			0	
Mean Mu[Yr]	65,000,000	45,000,000	22,000,000	6,500,000	175.000,000	0	25,000,000
CV Nu Min[Yr]	0.18331	0.17862	0.21423	0.49824	0.15375	0.40006	1.00007
)	
CV Nu Max[Yr]	0.21841	0.22552	0.30043	0.54914	0.16845	99999.00006	6.40317
CV Nu[Yr]	0.200000	0.220000	0.275000	0.520000	0.160000	0.430000	1.900000
Section D - "Full Info" - Total Lo	ss CRM; otherwise Larg	e Loss CRM					
Parameters Of:	Large Loss CRM	Large Loss CRM	Large Loss CRM	Large Loss CRM	Large Loss CRM	Large Loss CRM	Large Loss CRN
E(Claim Count) Lambda [Yr]	3.5000	3.0000	0.2500	3.0000	14.0000	10.0000	0.0000
Severity Max[Yr]	999,999,999,999	999,999,999,999	999,999,999,999	******	999,999,999,999	999,999,999,999	******
Severity Distribution	Empirical	Empirical	Empirical	Empirical	Empirical	Lognormal	Empirical
See Below	0.0	0.0	0.0	0.0	0.0		0.0
shift						2,000,000.0	
mu						14.4	
sigma						0.5	
min						2,000,000.0	
max						******	
Severtiy Values and Weights used i	for Empirical And Mixe	d Exponential severity d	isributions				
Severity Values[Yr]	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	2,000,000	2,000,000
	1,250,000	1,250,000	2,000,000	1,250,000	1,250,000		
	1,500,000	1,500,000	10,000,000	1,500,000	1,500,000		

Common Shock Correlation

- Correlate LoBs modeled with MP CRM/CAD method.
- LoBs are organized into covariance groups. Only Lobs within the same covariance group co-vary with one another.
- Frequency, "severity", and serial common shock.

Frequency Common Shock

- General Idea: Common draw from mixing distribution.
- Need to allow that LoBs might have different mixing distributions.
- Solution is draw common uniforms and use these to invert the mixing distributions $(g = F_G^{-1}(u))$.
- Remaining problem is that this will tend to generate very high correlation.
- Usual solution is to assume that G is an independent product, ie
 - $G[c] = G_1[c_1]G_2[c_2]$

- Then apply common shock only to G_1 .
- Note that $c = c_1 + c_2 + c_1 c_2$

Frequency Common Shock

- Variant is the "twisted product" $G[c] = G_1[c_1] \ltimes G_2[c_2]$ defined by $G = G_1G_2[c_2/G_1]$.
- That is, to draw from *G*:
 - Draw g_1 from G_1 .
 - Draw g_2 from $G_2[c_2/g_1]$.
 - $g = g_1 g_2$.

- Nice thing about twisted product is $c = c_1 + c_2$.
- **Parameter**: $FrCoVarWt = w, 0 \le w \le 1$. Varies by LoB.
- In twisted product set $c_1 = wc$, $c_2 = (1 w)c$ (where $G_i[0] \equiv 1$).

Serial Common Shock

- Bring in uniforms necessary to invert G_1 's for frequency c.s. These vary by <u>covariance group</u> and year.
- Also bring in uniforms for G_2 's varying by <u>LoB</u> and year.
- Reason for G_2 's is generate sufficient correlation between years but within LoB.
- Flip a weighted coin.

- For year $j, j \ge 2$, if coin flip comes up "heads" use the uniforms from year j-1. Otherwise use year j.
- Parameter FrSerialCoVarWt the weight for the coin flip. Can vary by covariance group or LoB. Usually by covariance group.

Serial Common Shock

• Summary

- *G*₁ correlates non-identical LoBs, both within-year and serially.
- *G*₂ serial correlation for identical LoBs.
- Serial correlation decays by FrSerialCoVarWt.

"Severity" Common Shock

- Really it's c.s. applied to the <u>c</u>onditional <u>aggregate</u> <u>d</u>istribution generating $\widetilde{Z_S}$.
- By H-R, the particular distribution family used doesn't matter.
- Assume lognormal, with *Mu*, *Sigma* the conditional parameters.
- Parameters: ZSCoVarWt, ZSSerialCoVarWt.
- Express CAD as a product of Lognormals
- $CAD = \log \left[.5Mu, Sigma \sqrt{ZSCovarWt} \right] \log \left[.5Mu, Sigma \sqrt{1 ZSCovarWt} \right]$
- Play same game as previously.

Why do we need ZSCoVarWt?

- Example: Identical LoBs LoB1, LoB2
- FrCoVarWt = .85, ZSCoVarWt = 0, $G_1 = 1 \pm \sqrt{c}$, with probability .5.

towerswatson com

• $c = O(v^2)$ - High Correlation $c = O(v^2 \gg c)$ - No Correlation

© 2013 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

Why ZSCoVarWt?

towerswatson.com

• FrCoVarWt = 0, ZSCoVarWt = .85, c = 0

Why ZSCoVarWt?

• For Identical LoBs:

	FrCoVarWt=1 ZSCoVarWt=0	FrCoVarWt=0 ZSCoVarWt=1
$\mathbf{v}^2 \rightarrow c$	$\rho \rightarrow 1$	$\mathbf{\rho} \rightarrow 0$
$\mathbf{v}^2 \gg c$	$\mathbf{\rho} \rightarrow 0$	ho ightarrow 1

More Tricks

towerswatson com

• Can increase skewness by adding shift to mixing distributions.

• Shifted lognormal:
$$G = s + Logn\left[ln\left(\frac{(1-s)^2}{\sqrt{c+(1-s)^2}}\right), \sqrt{ln\left(1+\frac{c}{(1-s)^2}\right)}\right]$$

• Skewness
$$= \frac{\sqrt{c}}{(1-s)} \left(3 + \frac{c}{(1-s)^2}\right)$$

• Can use discrete mixing distribution to create a mass at 0, for example.

R² Ins Co. – Correlation Parameters, Mixing Distributions

CAD Large Loss/Small Loss Simulation - Elements that vary by year are indicated with [Yr]

Section A - Setup

towerswatson com

Clases	CL	WC	CAL	Umb	PronNon-Cat	SmallCat	Maio	orCat
	02		0.12	0.000	riopiton cut	Cinterent		
Large Loss Threshold[Yr]	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	2,000,000	999,99	9,999
ModelChoice	Limited Infol	Limited Info2	Limited In	nfol				
CoVarGroup	1	1	1	1	2	3		4
FrCoVarWT	0.5000	0.3500	0.2500	1.0000	0.2500	0.5000		0.6108
ZSCoVarWT	1	0.075	0.075	1	0	0		0
FrSerialCoVarWT	0.3				0	0		0
ZSSerialCovarWeight	0.3				0	0		0

Section B - Parameterize Mixing Distribution. Mixing Dist of the form G = Gl compound with G2. G has mean 1 and variance c (Gl mean 1 and variance cl). Note that cl=FrCoVarWt*c So, choice of FrCoVarWt=1 (and p=1 for Wtd Sum) means cl=c and G=G1; Choice of FrCoVArWt=0 (and p=0 for Wtd. Sum) means c2=c and G=G2. Note that the Gl's by class co-vary within the defined covariance groups.

Compounding Type	TwistedProduct	TwistedProduct	TwistedProduct	TwistedProduct	TwistedProduct	TwistedProduct	Strai (htProduct
	0.5	0.5	0.5	0.5	0.5	0.5		0.5
c	0.03000	0.02000	0.04000	0.02000	0.02000	0.16000		1.00000
GlChoice	Lognormal	Lognormal	Lognormal	Lognormal	Lognormal	Lognormal	Discr	teUniforn
shift	0	0	0	0	0	0		
р								0.3892
m								1
G2Choice	Lognormal	Lognormal	Lognormal	Lognormal	Lognormal	Lognormal	Logno	nmal
shift	0	0	0	0	0	0		0.75
								$\overline{7}$

R² Ins Co. – Correlation Parameters, Mixing Distributions

- Casualty lines co-vary. (Covariance group 1)
- Non-Cat Property, Cats are independent (CoVar groups 2-4).
- Mixing Distributions all of form $G = logn \ltimes logn$ except Major Cat
- Major Cat (Net of Cat XoL)

- From Cat modelling know Prob(0), E(Major Cat), ν , $\gamma = skewness$.
- Modeling Solution: G = Discrete Uniform * (shift logn), c = 1
- Parameters of Discrete Uniform (inluding $c_1 = FrCoVarWt$) set up to match probability mass at 0.
- Shifted lognormal set up to match skewness.
- Umbrella: parameters set up to give higher correlation with GL than other casualty lines.

Correlation Matrix

CorrZ								
					1			
		GL	wc	CAL	Umb	PropNon-Cat	SmallCat	MajorCat
	GL	1.0000	0.2981	0.2923	0.2755	-0.0110	-0.0017	0.0004
ĺ	wc	0.2981	1.0000	0.1654	0.1453	-0.0033	-0.0075	-0.0079
[CAL	0.2923	0.1654	1.0000	0.1345	-0.0057	0.0034	-0.0007
1	Umb	0.2755	0.1453	0.1345	1.0000	-0.0003	0.0056	0.0030
]	PropNon-Cat	-0.0110	-0.0033	-0.0057	-0.0003	1.0000	0.0015	-0.0028
]	SmallCat	-0.0017	-0.0075	0.0034	0.0056	0.0015	1.0000	-0.0072
]	MajorCat	0.0004	-0.0079	-0.0007	0.0030	-0.0028	-0.0072	1.0000
	GL	0.2672	0.0780	0.1010	0.0834	-0.0053	0.0006	0.0072
]	WC	0.0846	0.2368	0.0494	0.0395	-0.0069	-0.0132	0.0011
	CAL	0.0814	0.0482	0.2754	0.0488	-0.0032	-0.0095	0.0130
2	Umb	0.0882	0.0287	0.0435	0.0459	0.0051	0.0147	0.0008
	PropNon-Cat	-0.0005	0.0212	0.0058	0.0234	-0.0030	0.0012	-0.0033
	SmallCat	-0.0004	-0.0045	0.0075	0.0067	-0.0131	-0.0134	0.0002
]	MajorCat	0.0084	0.0070	-0.0042	0.0087	0.0046	0.0143	-0.0020
	GL	0.0768	0.0318	0.0309	0.0234	0.0007	-0.0099	-0.0002
	WC	0.0293	0.0655	0.0235	0.0082	-0.0045	-0.0057	0.0029
	CAL	0.0343	0.0322	0.0967	0.0113	-0.0020	-0.0107	0.0092
3	Umb	0.0324	0.0167	0.0165	0.0167	-0.0039	-0.0065	-0.0004
	PropNon-Cat	-0.0053	0.0029	0.0085	-0.0010	0.0080	-0.0027	-0.0002
	SmallCat	0.0015	-0.0011	0.0074	0.0028	0.0067	0.0025	0.0021
	MajorCat	0.0042	0.0108	0.0054	0.0026	0.0054	0.0008	-0.0037

Reinsurance Cover for R² Insurance Co.

- Aggregate Stop-Loss Term: 2 years
- Subject Losses:

- 100% of Non-Cat losses limited to 1m per risk
- 50% of \$1*m xs* \$1*m* per risk
- 100% of Cat losses limited to 20% of Subject Premium (\$549*m*) per year.
- Subject Loss Ratio: 64.5%
- Coverage: 15% *xs* 75% of SP
- Premium: 5% of SP (33% RoL), 30% of which is margin, the remainder to an experience account.
- Profit Commission: 100% of residual EA

Reinsurance Cover Results

- NPV basis (Have also developed payout patterns by LoB).
- Low parameter model allows for efficient sensitivity testing.
- Key Stats (Reinsurer PoV):

Key Stats w\Sensitivity Testing									
	Base	c's, CVs Up	CoVar Wts Up	Skewness Up					
NPV(Profit/Loss)	12,851,332	9,773,105	12,281,670	12,776,752					
Prob(Econ. Loss)	11.59%	17.51%	12.32%	11.73%					
TVaR(95)	(35,406,559)	(50,849,025)	(41,391,711)	(35,944,163)					
TVaR(97.5)	(47,754,569)	(66,138,266)	(56,187,593)	(48,446,883)					
RoRaC(95)	9.46%	6.00%	8.08%	9.34%					
RoRaC (97.5)	7.53%	5.08%	6.48%	7.45%					
ERD	-4.40%	-8.00%	-5.23%	-4.52%					