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Uncertainty
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What is Modeling Uncertainty

In Loss Models from data to decisions we have the following two 
definitions

A mathematical model is an abstract and simplified representation of a 
given phenomenon that can be expresses in mathematical terms

A stochastic model is a mathematical model for a phenomenon 
displaying statistical regularity that can accurately describe the 
probabilities of outcomes
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What is Modeling Uncertainty
Some Types of Risk

Model Selection Risk
– Is our abstract simplification reasonably predictive?
– Did we choose the wrong model?

Parameter Risk 
– Even if we are happy with the model, are we using the right 

parameters in the model
– If we think that the parameters are reasonable on average, do we

think that they are an exact value or could they have a range of
values

Process Risk
– The nature of risk is that the results are random even if we have 

the “right” model and the “right” parameters
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Some Areas where you can include Uncertainty 
in Modeling

As Actuaries it is a Standard of Practice that a Loss Reserve estimate 
should be a range of values (uncertainty) rather than a single point 
estimate

Yet in our other work we often resort back to point estimates

Curve Fitting
use of the MLE estimates (the most likely or modal value)

Experience Rating
May report a few values, paid vs incurred, BF vs CL

Exposure Rating
Usually report a single value

With more sensible estimate of uncertainty

Easier to do a minimum variance credibility weighting of estimates

Less likely to fall into the trap of understating the volatility in 
Aggregate Loss/ DFA models
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Some Areas where you can include Uncertainty 
in Modeling

Curve Fitting 
– Parameter Uncertainty
– Parameter Correlation
– Trend
– Development

Experience Rating
– Loss Trend
– Loss Development
– Limits Profile
– Exposure Trend
– Premium Trend
– Rate Adequacy

Exposure Rating
– Loss Trend
– ALAE Treatment
– Limits Profile
– Rate Adequacy (Loss Ratio)



Section 2

Tools for Modeling Uncertainty
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Common Tools for Modeling Uncertainty

Simulation

Mixing Distributions
– Theoretical Mixing
– Numerical Mixing
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Common Tools for Modeling Uncertainty
Simulation-Notation
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probability density function of x with parameter(s) ϕ

cumulative distribution function of x with parameter(s) ϕ

probability, p, that x ≤ X
Inverse of the F(X) which finds the X value associated with p
This is the function used for simulation.
Some F(X)’s are directly invertible.  Others require other
Methods to simulate.
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Common Tools for Modeling Uncertainty
Modeling Uncertainty with Simulation

Let’s assume that we are happy with the exponential distribution as our 
choice for the severity distribution.

But we are not sure about the value for θ, the mean of the exponential 
distribution.

You can assume that θ also has a distribution function G(θ) and a 
corresponding G-1(pθ).

The process for each simulated year will be
1) draw a random pθ from a Uniform(0,1)
2) Θ=G-1(pθ).
3) draw a random pExp from a Uniform(0,1)
4) X=F-1(pExp;θ)

This process can be described as mixing
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Common Tools for Modeling Uncertainty
Mixing Distributions

structural loss distribution with independent parameter(s) φ and 
dependent parameter(s) ψ

mixing distribution on parameter(s) ψ with it’s own parameter(s) θ
Resulting (mixed) distribution with parameters φ and θ
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The basic idea is that you assume the losses are from a given distribution
f(y) of a known form.
f(y) has parameter(s) φ are fixed and parameter(s) ψ which are not fixed values.
ψ has it’s own distribution g(ψ) with parameter(s) θ.
When you mix (combine) these two distributions, the distribution h(y) will depend 
on the form of structural and mixing distributions and on the parmater(s) φ and θ.
h(y)may or may not have a recognizable form, it can be very useful when h(y) has 
a known form



2004 CARe Meeting in Boston – Applying Uncertainty 12

Common Tools for Modeling Uncertainty
Some Theoretical Mixing Distribution Combinations

),;(ˆ);(),;( βθλλλβθ GanPnNB =

2,1),,;(ˆ),,;(),,,;( αθτψψβψταβθτ InvTGyTGyTB =

21);,;(ˆ),;(),,;( == ταθψψβψαβθ InvGAyGAyGP

Probably the best known Mixing Distribution Combination

Other Mixing Distribution Combinations

2
2 ),;(ˆ),;(),,;( qqInvGAyLNqyLT σψψψµσµ =

2);,,;(ˆ),;(),,;( βταθβψψβψαβθ == InvTGyWyBurr
2);,;(ˆ),,;(),,;( αταθψψβψααβθ == InvWyTGyInvBurr

2),;(ˆ);(),;( αθψψψαθ InvGAyExpyBP =
2);,;(ˆ),;(),;( βαταθψψψααθ === InvWyWyLL

1 - Venter, Gary “Transformed Beta and Gamma Distributions and Aggregate Lossed”.  Proceedings of the CAS (1984), 156-193
2 – McDonald, James B and Butler, Richard J “ Some Generalized Mixture Distributions with an Application to Unemployment Duration” 

The Review and Economics and Statistics, Vol LXIX-2 (May 1987), 232-240
3 – Foundations of Casualty Actuarial Science, 3rd edition, 490 
NB-Negative Binomial, P – Poisson, Ga – Gamma, TB – Transformed Beta, TG – Transformed Gamma, ITG – Inverse Transformed Gamma
GB – Generalized Pareto, IGa – Inverse Gamma, Burr – Burr, W – Weibull, IBurr – Inverse Burr, IW – Inverse Weibull, BP – Ballasted Pareto
Exp – Exponential, LL – Log Logistic, LT – Log T, LN – Log Normal (See Appendix  for further definition of the distributions)

3
22 ),;(ˆ),;(),;( msms LNyLNyLN σµψψσψσσµ =+
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Mixing Distributions
Theoretical Mixing Distribution Combinations Parameterization – pdf’s
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Common Tools for Modeling Uncertainty
Numerical Mixing Methods

The mixing distributions don’t help the choice of f() and g() do not 
yield a recognizable h()

);(ˆ),;(),;( θψψψφθφ gyfyh =

));(,;(),;( 111 θφθφ gff uGuFuH −−− ≅
We have already discussed a simulation approach to mixing

A Numerical Integration approach to mixing can give very nice results
Without being as computer time intensive as simulation

∫=
ψ

ψθψψφθφ dgyfyh );(),;(),;(

If ψ is a vector, then multivariate integration is required

Gaussian Integration seems to work very nicely.  The number of points required will depend of the shape of the mixing distribution.
Multivariate mixing distributions tend to require more points.  A seven point Gaussian Integration has given good convergence on a two parameter 
mixing distribution
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Common Tools for Modeling Uncertainty
Numerical Integration “Quadrature”

Common numerical integration methods covered in the Numerical 
Analysis portion of the Actuarial Exams

Simpson’s Rule

Trapezoidal Rule

Romberg Rule

These methods will often require many terms to converge and do not 
work well over an indefinite range (0,∞) or (-∞,∞) and therefore are of 
limited use for modeling parameter uncertainty

Gaussian Quadrature can be defined to work well over an indefinite 
interval using relatively few points
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Common Tools for Modeling Uncertainty
Numerical Integration - Gaussian Integration Values for Normal Distribution
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If the Mixing distribution is Standard Normal

If the Mixing distribution is other than Normal

3 Point 5 Point 7 Point
w z p w z p w z p

0.166667 -1.732051 0.041632 0.011257 -2.856970 0.002139 0.000548 -3.750440 0.000088
0.666667 0.000000 0.500000 0.222076 -1.355626 0.087609 0.030757 -2.366759 0.008972
0.166667 1.732051 0.958368 0.533333 0.000000 0.500000 0.240123 -1.154405 0.124167

0.222076 1.355626 0.912391 0.457143 0.000000 0.500000
0.011257 2.856970 0.997861 0.240123 1.154405 0.875833

0.030757 2.366759 0.991028
0.000548 3.750440 0.999912

For background or more points see any of the following:
Abramowitz, Milton and Stegun, Irene – Handbook of Mathematical Tables
Press, William and Flannery, Brian - Numerical Recipes in C (available in other languages)
Burden, Richard and Fiares, Douglas – Numerical Analysis
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Common Tools for Modeling Uncertainty
A Simple Example – Ballasted Pareto as a Mixture

Ballasted Pareto as a function of an Exponential distribution mixed with an
Inverse Gamma distribution

Choosing Parameters for the distributions
The Exponential has an assumed mean, µ
•Select parameters for the Inverse Gamma Distribution
•You can choose and Inverse Gamma with a mean, µ, and an assumed CV

–α = 2+1/CV2, θ=µ/(α-1)
–Inverse Gamma parameters define the Ballasted Pareto Parameters
–Intuitive approach based on CV
–2nd moment exists for Ballasted Pareto
– For a thicker tailed Ballasted Pareto, you can select an α < 2
–If you select an α<1 an unconstrained distribution will have undefined 
(infinite) mean and the results can be very unstable
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Common Tools for Modeling Uncertainty
A Simple Example – Ballasted Pareto

Theoretical Mixing – we can directly model the Ballasted Pareto

),;(ˆ);(),;( αθµµµαθ InvGAyExpyBP =

( )( )αθαθ ,;;),;( 111
IGBPBP uInvGAuExpuBPy −−− ==

Simulation – First Simulate the mean of the exponential, then simulate 
from the exponential distribution

Numerical Integration – Evaluate the Exponential at a few points and 
then weigh them together to estimate the Ballasted Pareto
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Common Tools for Modeling Uncertainty
A Simple Example - Comparing Methods

Using all three methods compare the results for the following
),;();(),;( αθµµµαθ InvGAyExpyBP = ⌃

Compare the Following Statistics
E(x)
Var(x)
F(x); x=1K, 10K, 100K, 1M
LAS(x); x=1K, 10K, 100K, 1M

Using the following methods
•Theoretical Mixing
•Simulation - 1K  and 10k draws from the InvGamma, each with 20K 
Exponential draws
•Gaussian Integration (3 Point, 5 Point and 7 Point)
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Common Tools for Modeling Uncertainty
A Simple Example - Comparing Methods/Summarized Results

Ballasted Gaussian Quadrature Sim(1K) Sim(10K)
Exponential Pareto 3 Pt 5 Pt 7 Pt Mean Mean

E(X)= 10,000          10,000          9,685            9,973            9,998            9,742            9,803            
StdDev(X)= 10,000          30,000          16,151          21,683          24,833          20,529          21,515          

F(1,000)= 0.09516 0.15900 0.15896 0.15900 0.15900 0.16020 0.15972
F(10,000)= 0.63212 0.73354 0.73582 0.73364 0.73354 0.73533 0.73549

F(100,000)= 0.99995 0.99287 0.99416 0.99344 0.99266 0.99339 0.99331
F(1,000,000)= 1.00000 0.99995 1.00000 1.00000 0.99992 0.99999 0.99997

LAS(1,000)= 951.63          917.19          917.20          917.19          917.19          916.55          916.79          
LAS(10,000)= 6,321.21       5,203.67       5,197.65       5,203.41       5,203.66       5,187.61       5,188.13       

LAS(100,000)= 9,999.55       9,358.50       9,511.15       9,328.19       9,355.96       9,209.60       9,263.91       
LAS(1,000,000)= 10,000.00     9,958.85       9,685.34       9,972.34       9,956.41       9,738.12       9,794.51       

Pct. Error Pct. Error Pct. Error Pct. Error Pct. Error Pct. Error
E(X)= 0.00% -3.15% -0.27% -0.02% -2.58% -1.97%

StdDev(X)= 0.00% -46.16% -27.72% -17.22% -31.57% -28.28%
F(1,000)= 0.00% -0.03% 0.00% 0.00% 0.75% 0.45%

F(10,000)= 0.00% 0.31% 0.01% 0.00% 0.24% 0.27%
F(100,000)= 0.00% 0.13% 0.06% -0.02% 0.05% 0.04%

F(1,000,000)= 0.00% 0.01% 0.00% 0.00% 0.00% 0.00%
LAS(1,000)= 0.00% 0.00% 0.00% 0.00% -0.07% -0.04%

LAS(10,000)= 0.00% -0.12% 0.00% 0.00% -0.31% -0.30%
LAS(100,000)= 0.00% 1.63% -0.32% -0.03% -1.59% -1.01%

LAS(1,000,000)= 0.00% -2.75% 0.14% -0.02% -2.22% -1.65%

7 point integration is a good approximation for all of the statistics except for the standard deviation (but better 
than simulation in these cases).  This may be causes because based on the α used, 2.25, the variance is close 
to being undefined which is anytime α ≤ 2.
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Common Tools for Modeling Uncertainty
A Simple Example - Comparing Methods/Summarized Results

zi 3.7504 2.3668 1.1544 0.0000 -1.1544 -2.3668 -3.7504
wi 0.00055 0.03076 0.24012 0.45714 0.24012 0.03076 0.00055
pi 0.9999 0.9910 0.8758 0.5000 0.1242 0.0090 0.0001
αi 2.2500
θi 519,029     63,068       16,652       6,487         3,147         1,730         1,003         10,000       12,500       

Exp1 Exp2 Exp3 Exp4 Exp5 Exp5 Exp7 Wgtd Exp BP
Limit LAS LAS LAS LAS LAS LAS LAS LAS LAS LAS

10,000        9,904.28    9,247.50    7,517.97   5,098.54  3,015.95  1,724.79  1,003.07  5,203.65  6,321.20  5203.66342
100,000      90,956.61  50,150.19  16,610.53 6,487.18  3,147.16  1,730.13  1,003.12  9,355.95  9,999.53  9,358.49  

CDF CDF CDF CDF CDF CDF CDF CDF CDF CDF
10,000        0.01908 0.14663 0.45149 0.78594 0.95831 0.99691 0.99995 0.73354 0.63212 0.73354

100,000      0.17524 0.79517 0.99753 1.00000 1.00000 1.00000 1.00000 0.99266 0.99995 0.99287

zi & wi – Gaussian Integration constants
pi – F(zi), where F(z) is the standard normal CDF
θi – Mean of the ith Exponential = IG-1(pi;θ,α), where IG-1 is the Inverse CDF of the Inverse Gamma distribution.
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Simple weighting works for E(X), LAS(X), CDF(X)
To estimate Variance, you must estimate wgtd E(X2) and wgtd E(X) then

calculate wgtd Var(X)=wgtd E(X2)-[wgtd E(X)]2
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Common Tools for Modeling Uncertainty
A Simple Example - Comparing Methods/Summarized Results

CDF-Ballasted Pareto by 7 Pnt Integration

0.50

0.60

0.70

0.80

0.90

1.00

0 20,000 40,000 60,000 80,000 100,000

F1
F2
F3
F4
F5
F6
F7
FWgt
Fexp
Fbp

LAS-Ballasted Pareto by 7 Pnt Integration

0

5,000

10,000

15,000

20,000

25,000

0 10,000 20,000 30,000 40,000 50,000 60,000

F1
F2
F3
F4
F5
F6
F7
FWgt
Fexp
Fbp



Section 3

Fitting Size of Loss Distributions
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Fitting Size of Loss Distributions
Considerations

Considerations when curve fitting

Fewer Parameters are better unless significant improvement is gained 
by the additional parameters (Parsimony) 

It is not good enough to only look at the most likely parameter values 
(the MLE predictors)

Testing the significance of additional parameters
– Likelihood Ratio Test
– T-Test

Many common distributions have correlated parameters.  Correlation 
of these parameters adds to the complexity of modeling the loss 
amounts. Ignoring the correlation is wrong.

MLE parameter estimates are asymptotically normally distributed
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Fitting Size of Loss Distributions
Sources of Uncertainty

Some Sources of Uncertainty when Curve Fitting

Parameter Uncertainty

Parameter Correlation

Other Factors not directly addressed here but could by adding an
additional dimension to the uncertainty

Severity Trend

Limits Profile

Severity Loss Development
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Fitting Size of Loss Distributions
Maximum Likelihood

The process of fitting a Size of Loss distribution using maximum likelihood is to 
find the set of Parameters, ψ, that maximizes the likelihood function L.

For complete individual data the Likelihood function is defined as follows where 
f(x;ψ) is the probability density function

∏=
i

ixfL );( ψ

Generally it is easier to work with the log of the likelihood function, ℓ.  It is 
equivalent to fit the Likelihood function, L, or the log-likelihood function, ℓ.

( )∑∏ =







=

i
i

i
i xfxf );(ln);(ln ψψλ

Once you have found the parameters, ψ that maximizes the likelihood function. 
You need to estimate the covariance matrix, V, of the parameters in order to 
model the uncertainty of those parameters.

~
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Fitting Size of Loss Distributions
Likelihood Contour for a Ballasted Pareto
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Ballasted Pareto Log-Likelihood Contour

MLE Point Estimate

When fitting a Size of Loss 
Distribution.  Often users only 
use the point estimate and do 
not take into account that the 
parameters actually have a 
distribution.
The maximum likelihood 
estimates asymptotically follow 
a normal distribution.

As you can see from this 
likelihood plot, not only do you 
need estimates of the standard 
deviations for each of the 
parameters, you need 
estimates of the correlation 
between each of the 
parameters.
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Fitting Size of Loss Distributions
Estimating the Co-Variance Matrix

The covariance matrix, V, for the parameter(s) can be estimated from the 
information matrix A, which is the expected value of the second derivative 
matrix for the log-likelihood function, ℓ.
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You can also approximate the information Matrix using Numerical Differentiation
The covariance matrix is calculated by taking the Matrix inverse of the information 
matrix.
The diagonal elements on the covariance matrix are the variance of the individual 
parameter.  The off-diagonal elements define the covariances between parameters
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Fitting Size of Loss Distributions
Estimating Parameter Uncertainty-A Ballasted Pareto example
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Kleiber, Christian and Kotz, Samuel - Statistical Size Distributions in Economics and Actuarial Sciences
The also have the information matrices for the Transformed Beta(GB2), Transformed Gamma(GG), Log-Normal and related 
distributions.
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=′ ψ’(α) is the trigamma function, the second derivative of the natural log of the gamma function, 
Γ(α).  See Abramowitz and Stegun, Handbook of Mathematical Tables
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The Ballasted Pareto Information Matrix

The next step is to use the M.L.E. estimates in the Information Matrix
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Fitting Size of Loss Distributions
Estimating the Uncertainty-Ballasted Pareto example
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Using the MLE estimates below

Gives the following values in the information matrix
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You can then use a function like excel’s MINVERSE to invert the matrix

You can now estimate the parameter standard deviations and correlations
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Fitting Size of Loss Distributions
Likelihood Contour for a Ballasted Pareto
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MLE Point Estimate

Based on the results of the 
covariance matrix and 
assuming the parameters are 
normally distributed, we now 
assume the following
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Fitting Size of Loss Distributions
Using an Extremal Pareto rather than a Ballasted Pareto
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There is an alternate parameterization for the Ballasted Pareto called the 
Extremal Pareto

While there is still significant volatility around the parameters the correlation between 
θ* and α has been significantly reduced as can be seen in the next graph
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Fitting Size of Loss Distributions
Likelihood Contour for an Extremal Pareto
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Fitting Size of Loss Distributions
Comparing Correlations between Ballasted and Extremal Paretos
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If you are ignoring parameter uncertainty, then the Extremal Pareto does not 
improve your modeling (as the point estimate is the same)
If you model parameter uncertainty including the correlation between 
parameters, then the Extremal Pareto does not improve your analysis.
Since few curve fitting packages estimate the parameter correlation, but 
many calculate t-statistic for parameters, therefore you can estimate the 
parameter standard deviations.
If you are modeling the parameter uncertainty (stddev) but not the correlation, 
then the Extremal Pareto can give better results.
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Fitting Size of Loss Distributions
Ballasted Pareto compared to Bi-Variate Normal Distribution
Bivariate Normal Likelihood Countures with varying correlation
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Section 3

Modeling Multivariate Parameter 
Uncertainty
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Modeling Multivariate Parameter Uncertainty

First you need to be able to simulate from a multivariate distribution on the 
parameters
Since the MLE estimates are asymptotically normally distributed, the 
multivariate Normal is a natural choice 

– Some believe and have shown that a multivariate Log-Normal is superior 
particularly when parameters are constrained to be positive

Any correlating function or copula could be used that you think is appropriate
The following example is based on the Multivariate Normal
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Modeling Multivariate Parameter Uncertainty 
Reflecting the parameter uncertainty and parameter correlation with a 
multivariate normal

First you need to factor the correlation matrix V to solve for the lower 
diagonal matrix C such that

'CCV =
Choleski factorization is generally used
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Klugman, Panjer, Willmot – Loss Models  from data to decisions, pp 613
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Modeling Multivariate Parameter Uncertainty 
Reflecting the parameter uncertainty and parameter correlation with a 
multivariate normal

Second generate two independent standard normal deviates
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If V was the correlation matrix

Then new z’1 and z’2 are the correlated standard normal deviates
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Then new zθ and zα are the correlated parameter estimate
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Then u’1 and u’2 are uniform deviates correlated by a normal copula 
deviates.  Which is one reason the Normal copula is popular

Trivia, if you evaluate the Normal Distribution at the estimated z’s
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Modeling Multivariate Parameter Uncertainty 
Reflecting the parameter uncertainty and parameter correlation with a 
multivariate normal

Alternatively you can work directly with covariance V to solve for the lower 
diagonal matrix C such that

'CCV =
Choleski factorization is generally used
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Klugman, Panjer, Willmot – Loss Models  from data to decisions, pp 613
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Modeling Multivariate Parameter Uncertainty 
Reflecting the parameter uncertainty and parameter correlation with a 
multivariate normal

Second generate two independent standard normal deviates
)1,0();1,0( 21 NormalzNormalz ≈≈

If V was the covariance matrix









+
















−

=








α

θ

αθαααθ

θ

α

θ

µ
µ

ρσσρ
σ

2

1
2
,, 1

0

z
z

z
z

Then new zθ and zα are the correlated normal deviates
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Klugman, Panjer, Willmot – Loss Models  from data to decisions, pp 613
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Modeling Multivariate Parameter Uncertainty 
Reflecting the parameter uncertainty and parameter correlation with a 
multivariate normal applied to the Ballasted Pareto example

;4057.1~;000,10~
== αθ

40.90951291;0.106941;1,184.131 , === αθαθ ρσσ

In order to model the uncertainty and correlation of a Ballasted Pareto’s parameter
You need the MLE estimates of the parameter

Next you need to be able to generate some MultiVariate Normals with the above 
means, standard deviations, and correlation coefficient

Now I will do a similar comparison between the Numerical Integration mixing 
methods and Simulation
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Modeling Multivariate Parameter Uncertainty
Multivariate 3pt Gaussian Integration Including Correlation

Ballasted Pareto w/Multivariate Parameter Uncertainty
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Modeling Multivariate Parameter Uncertainty
Multivariate 3pt Gaussian Integration Excluding Correlation

Ballasted Pareto w/Multivariate Parameter Uncertainty
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Modeling Multivariate Parameter Uncertainty
Multivariate 3pt Gaussian Integration Including Correlation

Ballasted Pareto w/Multivariate Parameter Uncertainty
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Modeling Multivariate Parameter Uncertainty
Multivariate 3pt Gaussian Integration Excluding Correlation

Ballasted Pareto w/Multivariate Parameter Uncertainty
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Uncertainty in Reinsurance Pricing
Summary

The required tools to include the effects of parameter uncertainty are 
available in common tools like spreadsheets

The most difficult step is to estimate the information matrix and that 
can be approximated by numerical differentiation

Matrix Functions like Inverse, Multiplication, Transpose are built into 
most spreadsheets and Choleski Factorization is not difficult to solve

Beyond parameter uncertainty this also gives all the tools needed for a 
normal copula

Uncertainty can be built into many more of the actuarial models than is 
commonly done

Much progress has been made on DFA modeling, it should expand 
into other areas
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