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Quantifying Correlation with 
Copulas
Multivariate t-Copulas
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What is a copula?

A way of specifying joint distributions when you know the individual marginals

A way to specify what parts of the marginal distributions are most correlated

Works by the copula correlating the probabilities, then applying inverse 
distributions to get the correlated marginal distributions

Formally copulas are joint distributions of unit uniform variates, as probabilities 
are uniform on [0,1]
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Formal Rules

F(x,y) = C(FX(x),FY(y))
– Joint distribution is copula evaluated at the marginal distributions
– Expresses joint distribution as inter-dependency applied to the individual distributions

C(u,v) = F(FX
-1(u),FY

-1(v))
– u and v are unit uniforms, F maps R2 to [0,1]

FY|X(y) = C1(FX(x),FY(y)) 
– Derivative of the copula is the conditional distribution

E.g., C(u,v) = uv, C1(u,v) = v = Pr(V<v|U=u)
– So independence copula 
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Copulas Differ in Tail Effects
Light Tailed Copulas Joint Lognormal
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Copulas Differ in Tail Effects
Heavy Tailed Copulas Joint Lognormal

HRT Joint Unit Lognormal Density Tau = .35
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Quantifying Tail Concentration

L(z) = Pr(U<z|V<z) 

R(z) = Pr(U>z|V>z)

L(z) = C(z,z)/z 

R(z) = [1 – 2z +C(z,z)]/(1 – z)

L(1) = 1 = R(0)

Action is in R(z) near 1 and L(z) near 0

lim R(z), zd1 is R, and lim L(z), zd0 is L
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LR Functions for Tau = .35
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Example: ISO Loss and LAE

Freez and Valdez find Gumbel fits best, but only assume Paretos

Klugman and Parsa assume Frank, but find better fitting distributions than Pareto

 Loss Median Loss Tail Expense Median Expense Tail 

Frees & Valdez 12,000 1.12 5500 2.12 

Klugman & Parsa 12,275 1.05 5875 1.58 

 

All moments less than tail parameter convergeAll moments less than tail parameter converge
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Fitting Copulas to Cat Loss Data and Testing Fit by 
LR

LR Function for DE/MD and Fits
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Parameter 0.968 1.67 4.92 0.624 1.68 

Ln Likelihood 124 157 183 176 161 

Tau 0.34 0.40 0.45 0.43 0.40 
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Auto and Fire Claims in French Windstorms

Les 736 Tempêtes ayant un coût supérieur à 1000 Francs 
dans les deux branches.
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Modified Tail Concentration Functions
Both MLE and R function show that HRT fits best

La fonction R(z)
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Extending to Multi-Variate Case

Single parameter not enough – all variates would have same correlation

You would like to have at least a parameter for each pair of variates to 
determine the strength of their dependency, and one overall for tail strength

The t-copula has this minimum set

With this minimum you can control all correlations but all tail strengths are the 
same
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T- Distribution and t-copula

T- distribution, n degrees of freedom (n=integer not necessary)
– fn(x) = K1(1+x2/n)-(n+1)/2, with K1=Γ(1/2+n/2)(nπ)-1/2/Γ(n/2)
– Fn(x) = ½ + ½ sign(x)betadist[x2/(n+x2), ½, n/2]
– s = Fn

-1(u) = sign(u -½)n1/2[ – 1+1/betainv(|2u-1|,½, n/2)]-1/2 with Excel betainv
– T ~ normal * {inverse gamma}1/2

Bivariate t-copula
– C(Fn(x), Fn(y)) is bivariate t- distribution

– Has common degrees of freedom n and a correlation parameter ρ
– c(u,v; n,ρ) = K2[(1+s2/n)(1+t2/n)](n+1)/2{1+[s2– 2ρst +t2]/[(1–ρ2)n]}-1-n/2

– with K2 = ½[Γ(n/2)/Γ(0.5+n/2)]2n(1-ρ2)-1/2 and s=Fn
-1(u), t=Fn

-1(v)
– C(F(x), G(y)) is bivariate distribution with t- copula for any distributions F and G

– C ~ {normal copula with same ρ} *{inverse gamma}1/2

– Kendall’s τ is related to ρ by τ = (2/π)arcsin(ρ) (same as normal copula)
– R, defined as limit z →1Pr(U>z|V>z), is given by:R/2 = 1–Fn+1{[(n+1)(1–

ρ)/(1+ρ)]0.5}
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Bivariate t-Copula and Ratio to Normal Copula
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Tail Dependence R
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Multivariate t-Copula

Take m variates, and u a vector of m probability values (numbers in [0,1]) 

Take s as the vector of univariate t-quantiles of u with n degrees of freedom, 
that is s=Fn

-1(u) for each element of s and u. 

Take Σ as an m x m correlation matrix with determinant d. 

The m-dimensional t-copula has density:

c(u; n, Σ) = Km[Π i=1
m(1+si

2/n)](n+1)/2(1+s’Σ-1s/n)-( m+n)/2

where  Km= Γ[(m+n)/2][Γ(n/2)]m–1[Γ(½ +n/2)]-–md–1/2.

With Kendall’s τ coefficient matrix Τ, the correlation matrix is Σ = sin(Τπ/2).

C ~ {normal copula with same Κ} *{inverse gamma}1/2
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Loss Scenario Generation for t-Correlated 
Lines

Generate a multi-variate normal loss vector with the same correlation matrix.

Divide each loss by (y/n)0.5 where y is a number simulated from a chi-squared 
distribution with n degrees of freedom. This gives a t-distributed loss vector.

Apply the t-distribution Fn to each loss to get the probability vector generated 
for the t-copula.

The inverse severity distributions for each line can then be applied to get the by-
line losses for the scenario.
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Dependency Measures for Multiple Variates

τ = 4E(C) – 1, where E(C) is the expected value of the copula

τ = 0 for the independence case and τ = 1 for perfect correlation

For m-dimensions this is τ = [2mE(C)–1]/[2m – 1–1].

R(z)= Pr(U>z & V>z)/Pr(V>z). 
– Since Pr(V>z) = 1– z = Pr(U>z), U and V can be switched in the definition of R(z).

A similar concept can be defined for the multivariate copula:
– R(z)= Pr(U>z & V>z & W>z)/(1 – z) = Pr(U>z & V>z|W>z)

– Because of the symmetry in the first equation, U, V, and W can be swapped around at 
will in the second equation. 

– This function provides a measure of the overall tail dependency of the three variates, 
and it can be generalized to higher dimensions. 

A similar tail dependency function can be defined for the left tail:
– L(z) = Pr(U<z & V<z & W<z)/z = C(z,z,z)/z
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Sample Auto, Residential and Commercial Losses
Hurricane Cat Model Data AC AR RC ARC

τ 82.4% 84.4% 87.6% 84.8%

ρ .96 .97 .98
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Fit to Right Side Only
Try n=20

 

 AC AR RC
Sample ρ .96 .97 .98 
Selected ρ .94 .97 .96 
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Effect of n on L (and so on R)
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Effect of n on L for Small z

L(z) still 
declining at 
z=10-20 for 
n=50
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Compromising on n
Take n = 42

Target/Fit 94% (AC) 97% (AR) 96% (RC) 
0.005 .54 / .61 .52 / .68 .693 / . 695 
0.01 .61 / .64 .68 / .70 .718 / .715 
 

Too heavy in extreme tail for AC and AR but close for RC
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finis


