Advanced Component Method (ACM[™]) for Earthquake Vulnerability Assessment

Jayanta Guin, Ph.D.

BETTER TECHNOLOGY BETTER DATA BETTER DECISIONS

Discussion Agenda

- □ Objective versus subjective vulnerability assessment techniques
- Development of physical and monetary damage functions using ACM
- □ How ACM improves loss estimates

© 2002 AIR Worldwide Corporation

Fundamental Earthquake Model Components

Typical Earthquake Damage Observation

© 2002 AIR Worldwide Corporation

Response of Different Buildings to Same PGA

Objective versus Subjective Vulnerability Assessment

Procedure for the Development of Damage Functions Using ACM

- Detailed design drawings of typical buildings in every modeled region
- □ Seismic analysis performed on each building type
- □ Component damage curves estimated for each building type
- Repair strategies and costs determined for each region
- □ Objective estimate of damage obtained for each building type

© 2002 AIR	Worldwide	Corporation	

CONFIDENTIAL

ACM-US: Building Designs

- Steel
 - ➤ Moment Resisting Frame
 - ► Braced Frame
- □ Reinforced Concrete
 - ➤ Moment Resisting Frame
 - ➤ Shear Wall
- □ Pre-Cast Concrete
 - ➤ Moment Resisting Frame
 - Shear Wall
 - ► Tilt-Up

35 Building Types

© 2002 AIR Worldwide Corporation

Applying ACM to the Structure

Capturing the Variability in Actual Buildings

© 2002 AIR Worldwide Corporation

Push-over Analysis

Vulnerability Assessment at the Component Level

Translation of Physical Damage Ratio to Monetary Damage Estimate Using ACM

With ACM:

- □ For *each component* there is a damage state that corresponds to each level of building deformation
- □ For each component and at each damage state, there is an associated repair strategy
- □ For *each repair strategy*, there is a repair cost

© 2002 AIR Worldwide Corporation

CONFIDENTIAL

Typical Component Repair Strategies

RC Columns:

Slight:

Damage: Local hairline cracks. Action: Epoxy injection.

Moderate:

Damage: Extensive large cracks. Spalling of concrete in weaker elements. *Action*: Epoxy injection, grouting and jacketing.

Extensive:

Damage: Extensive crushing of concrete. Disclosure of buckled reinforcement. *Action*: Jacketing or replacement of affected members.

Complete:

Damage: Large amounts of concrete fallen. Large tensile strain in hoops. Fracture of hoops leading to loss of confinement. Some longitudinal bars are fractured. *Action*: Replace members.

© 2002 AIR Worldwide Corporation

Cost by Component by Floor

Replacement Cost								
	Column	Beam	Floor	Partition	Cladding	Glazing	Ceiling	MEP
1st Floor	88320	54148	228865	38595	20730	232018	42439	281160
2nd Floor	77288	54148	228865	38595	11000	232018	42439	281160
3rd Floor	77288	54148	228865	38595	11000	232018	42439	281160
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•

Repair/Replacement									
		Column	Beam	Floor	Partition	Cladding	Glazing	Ceiling	MEP
1st Floor	Negligible	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Slight	0.000	0.000	0.048	0.031	0.000	0.101	0.065	0.031
	Moderate	0.057	0.000	0.150	0.147	0.067	0.304	0.229	0.080
	Extensive	0.622	0.746	1.204	0.631	0.532	0.421	0.797	0.840
	Complete	1.055	1.186	1.204	0.950	0.920	0.842	1.056	1.052
2nd Floor	Negligible	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Slight	0.000	0.000	0.048	0.031	0.000	0.101	0.065	0.031
	Moderate	0.066	0.000	0.150	0.147	0.058	0.304	0.229	0.080
	Extensive	0.653	0.746	1.204	0.631	0.500	0.421	0.797	0.840
	Complete	1.078	1.186	1.204	0.950	0.870	0.842	1.056	1.052
3rd Floor	Negligible	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Slight	0.000	0.000	0.048	0.031	0.000	0.101	0.065	0.031
	Moderate	0.066	0.000	0.150	0.147	0.058	0.304	0.229	0.080
	Extensive	0.653	0.746	1.204	0.631	0.500	0.421	0.797	0.840
	Complete	1.078	1.186	1.204	0.950	0.870	0.842	1.056	1.052
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•

© 2002 AIR Worldwide Corporation

CONFIDENTIAL

Final Damage Curves (Physical and Monetary)

Comparison Between MMI and ACM

How ACM Improves Loss Estimates

- □ Traditional approach generally
 - ► Underestimates building damage for large earthquakes (M>7.5)
 - ► Overestimates building damage for small earthquakes (M<6.5)
- □ Traditional MMI approach generally
 - > Overestimates the contents damage in high-rise buildings
 - > Underestimates the contents damage in low-rise buildings

© 2002 AIR Worldwide Corporation

