Predictive Modeling in Workers Compensation 2008 CAS Ratemaking Seminar

Prepared by
Louise Francis, FCAS, MAAA
Francis Analytics and Actuarial Data Mining, Inc.

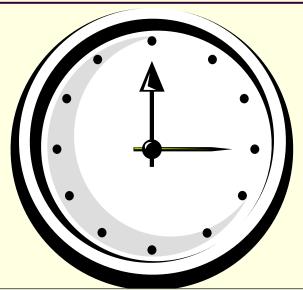
www.data-mines.com

Louise.francis@data-mines.cm

<u>Objectives</u>

- Introduce predictive modeling and where modeling fits in actuarial practice
- Discuss connection to traditional analytical procedures
- Discuss applications of predictive modeling in Workers Compensation

Timeline of Casualty Actuarial Evolution

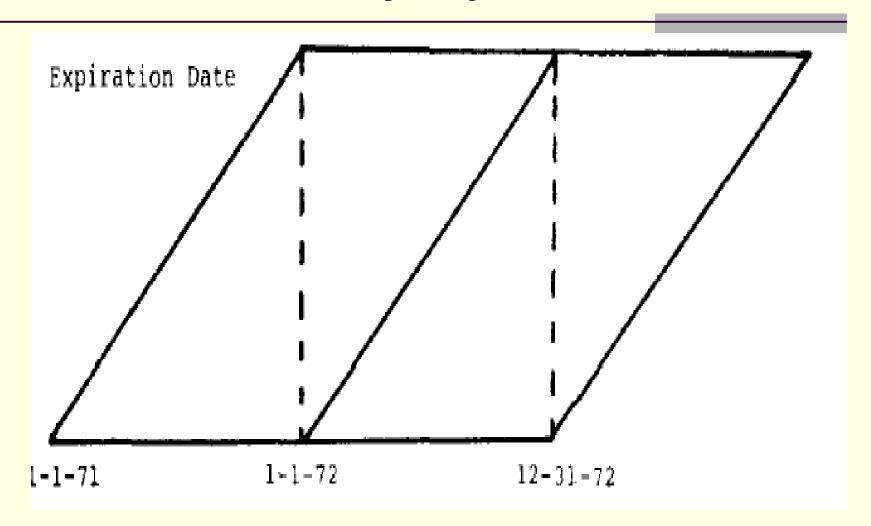


A Casualty Actuary's Perspective on Data Modeling

- The Stone Age: 1914 ...
 - Simple deterministic methods: Slice and dice data based on a few categories
 - Compute means or relativities in each cell
 - Ignore interactions and other multivariate relationships
 - Often ad-hoc
 - Based on empirical data little use of parametric models
- The Pre Industrial age: 1970 ...
 - Fit probability distributions to severity data
 - Focus is typically on underwriting, not claims
- The Industrial Age 1985 ...
 - Research published on computer catastrophe models
 - Use simulation to quantify variability
 - The Computer Age 1990s...
 - European actuaries begin to use GLMs
 - At end of 20st century, large companies and consulting firms start to use data mining
- The Current era
 - In personal lines, modeling the rule rather than the exception
 - Often GLM based, though GLMs evolving to GAMs
 - Commercial lines beginning to embrace modeling for ratemaking and underwriting

Stone Age Example: WC Ratemaking:

Wineman, 1990 Discussion Paper Program



WC Ratemaking (Kallop – 1975)

	(1)	(2)	(3)	(4)	(5)	(6)
			FACTORS	S		
	Valued	To		Loss Ad-		Modified
	As of	Current	Develop-	justment	Composite	Data
	12-31-73	Level	ment	Expense	(2)x[(3)x(4)]	(1)x(5)
Premiums and	Losses of Po	licies whi	ich became	effective 1	-1-72 through	12-31-72
Std. Earned Prem.	86,014,777	1.053	1.003	-	1.056	90,831,605
	40.370.011	1 122	1 110	1.130	1 421	60 204 221
Incurred Losses	48,360,811	1.133	1.118	1.150	1.431	69,204,321
			1.118	1.150	1.431	.762
	ustment Rat	io				.762
Loss and Loss Adj	ustment Rat Losses of Po	io licies whi				.762 12-31-71
Loss and Loss Adj Premiums and I Std. Earned Prem.	ustment Rat Losses of Po	licies whi	ich became		-1-71 through	.762 12-31-71 78,958,055
Premiums and I	ustment Rat Losses of Po 76,583,952 41,035,648	1.022 1.209	ich became	effective	1.031	.762
Premiums and I Std. Earned Prem. Incurred Losses Loss and Loss Adj	ustment Rat Losses of Po 76,583,952 41,035,648 ustment Rat	io licies whi 1.022 1.209	1.009 1.089	effective 1	1.031	.762 12-31-71 78,958,055 61,061,044 .773
Premiums and I Std. Earned Prem. Incurred Losses Loss and Loss Adj	Losses of Po 76,583,952 41,035,648 ustment Rat or Policies w	io licies whi 1.022 1.209	1.009 1.089	effective 1	1.031 1.488	.762 12-31-71 78,958,055 61,061,044 .773
Loss and Loss Adj Premiums and I Std. Earned Prem. Incurred Losses Loss and Loss Adj Total fo	Losses of Po 76,583,952 41,035,648 ustment Rat or Policies w	io licies whi 1.022 1.209 io hich beca	1.009 1.089	1.130 ve 1-1-71 th	1.031 1.488 hrough 12-31-7	.762 12-31-71 78,958,055 61,061,044 .773

WC Ratemaking, cont.

F. Change in Premium Level by Industry Group

Applying the industry group differentials from E above produces the following changes in premium level by industry group:

		Industry Groups				
		Mfg.	Cont.	All Other	Total	
1.	Overall Change in Premium Level	*				
	(From D)	_	_	_	1.110	
2.	Industry Group Differentials					
	(From E)	.913	1.023	1.036	1.000	
3 .	Final Change in Premium Level by					
	Industry Group (2) \times 1.110	1.013	1.136	1.150	1.110	

Pre-Industrial: Model for Increased Limits Factors: Finger, PCAS, 1976

I. THE LOG-NORMAL DISTRIBUTION

The log-normal distribution (with parameters μ and σ^2) is defined as follows:

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma x} e^{-\frac{1}{2} \left(\frac{\ln x - \mu}{\sigma}\right)^2} \qquad x > 0$$

The mean is $M = e^{\mu + \frac{1}{2} \sigma^2}$

The variance is $e^{2\mu + \sigma^2} (e^{\sigma^2} - 1)$

The coefficient of variation is $\beta = (e^{\sigma^2} - 1)^{\frac{1}{2}}$

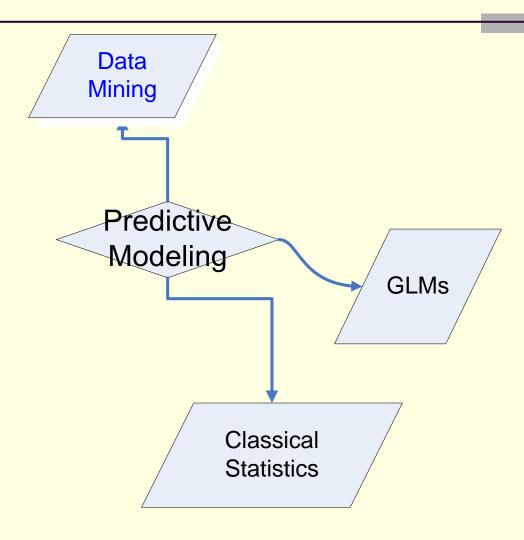
Let the cumulative distribution function be

Predictive Modeling Overview

A Premise about Advanced Modeling

- Advanced data mining and machine learning procedures are fancy versions of more basic procedures that many people already understand
- Predictive modeling software allows users to analyze large databases to solve business decision problems

Predictive Modeling Family



Major Categories of Modeling

- Supervised learning
 - Most common situation
 - A dependent variable
 - Claim Frequency
 - Loss Ratio
 - Renew/non-renew
 - Fraud/Legitimate
 - Some methods
 - Regression and GLMs
 - Trees
 - Some neural networks

- Unsupervised learning
 - No dependent variable
 - Group like records together
 - Territory construction
 - Some fraud prediction
 - Text mining
 - Some Methods
 - K-means clustering
 - Principal components
 - Kohonen neural networks

Kinds of Applications

- Classification
 - Target variable is categorical
- Prediction
 - Target variable is numeric

POTENTIAL VALUE OF AN PM SCORING SYSTEM

- Screening to Select Accounts
- Providing Evidence to Support a non-renewal
- Auditing of Canceled Policies to Determine Reasons for Cancellation
- Pricing for Some Accounts (small accounts)
- Provide evidence to regulators to support use of credit information
- Reserving

Underwriting Applications

- Develop model score for policyholders. Use to augment underwriter judgment
- Use to rate accounts
 - More likely to apply to small accounts
- Estimate full lifetime value of account
 - Model liklihood of renewal

WC Reserving

Individual Claim Payment Forecasting

[To Estimate the Workers' Compensation Tail]

Shawn Wright, Associate Actuary, SAIF Richard Sherman, FCAS, MAAA

TYPES OF FRAUD

- WORKERS' COMPENSATION
- Employee Fraud
- -Working While Collecting
 - -Staged Accidents
 - -Prior or Non-Work Injuries
- Employer Fraud
- -Misclassification of Employees
- -Understating Payroll
- -Employee Leasing
- Re-Incorporation to Avoid Mod

Insurance Fraud- The Problem

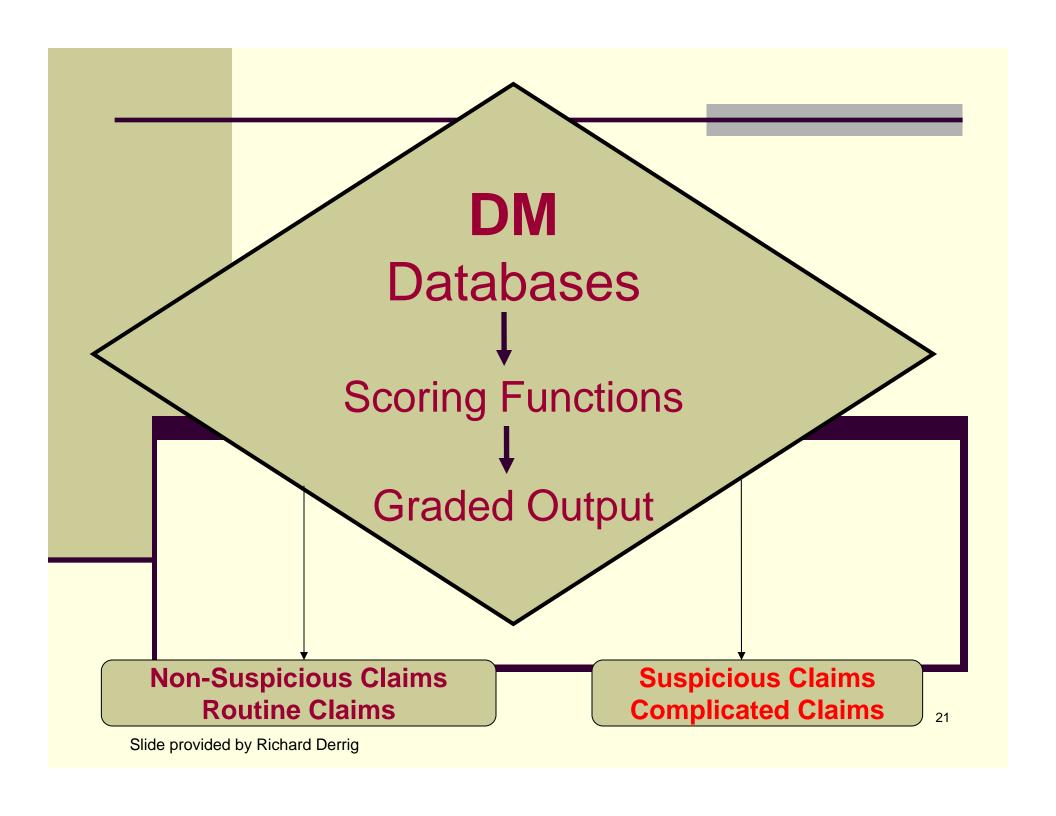
- ISO/IRC 2001 Study: Auto and Workers Compensation Fraud a Big Problem by 27% of Insurers.
- Mass IFB: 1,500 referrals annually for Auto, WC, and (10%) Other P-L.

FRAUD IDENTIFICATION

- Experience and Judgment
- Artificial Intelligence Systems
 - Regression & Tree Models
 - Neural Networks
 - Expert Systems
 - Fuzzy Clusters
 - Genetic Algorithms
 - All of the Above

REAL PROBLEM-CLAIM FRAUD

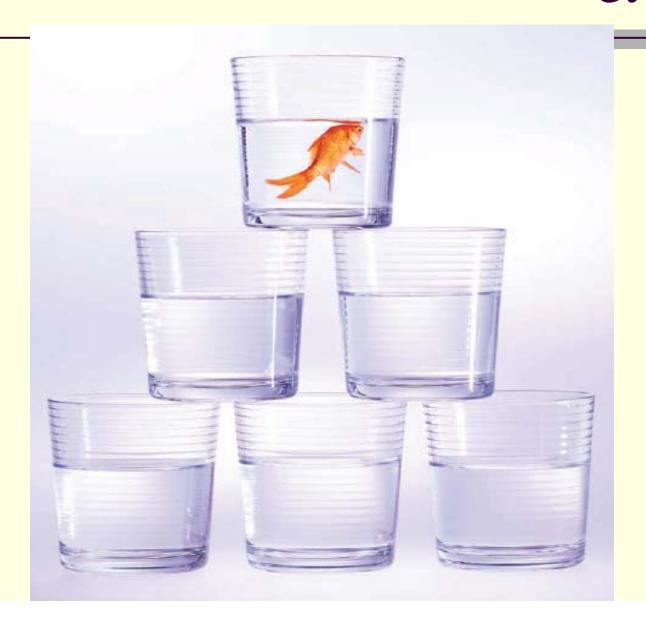
- Classify all claims
- Identify valid classes
 - Pay the claim
 - No hassle
 - Visa Example
- Identify (possible) fraud
 - Investigation needed
- Identify "gray" classes
 - Minimize with "learning" algorithms



Underwriting Red Flags

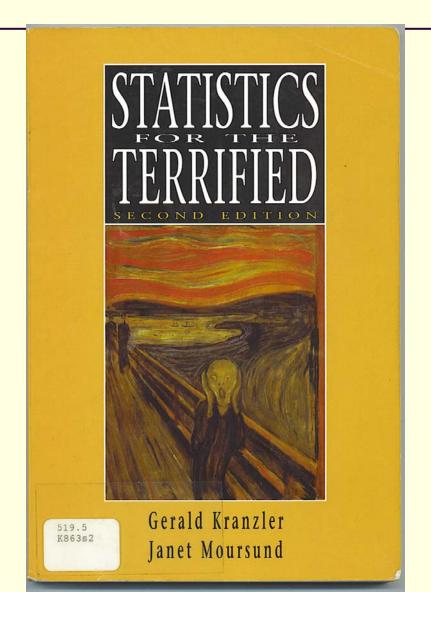
- Prior Claims History (Mod)
- High Mod versus Low Premium
- Increases/Decreases in Payroll
- Changes of Operation
- Loss Prevention Visits
- Preliminary Physical Audits
- Check Websites

Core Part of a Business Strategy



Motivation for for Methods

Many of the Methods are Intuitive



The Software Used in This Presentation

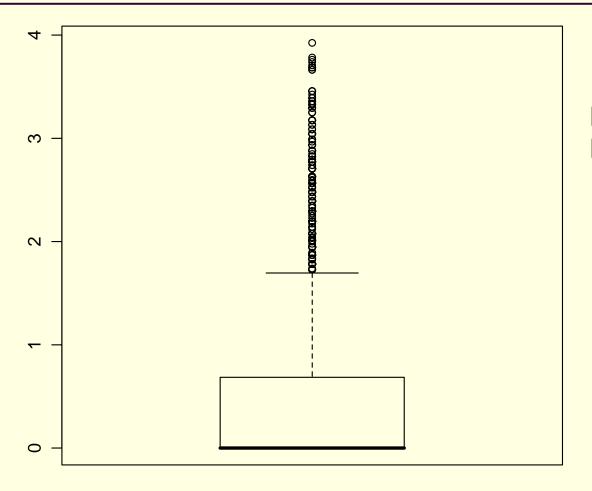
- Microsoft Excel
- \blacksquare R
 - Free statistical software
 - Get a book on using R
 - John Fox, An R and S-PLUS Companion to Applied Regression
 - Download from www.r-project .org
 - Install tree and nnet packages for decision trees and neural networks

Data Exploration in Predictive Modeling

Exploratory Data Analysis

- Typically the first step in analyzing data
- Makes heavy use of graphical techniques
- Also makes use of simple descriptive statistics
- Purpose
 - Find outliers (and errors)
 - Explore structure of the data

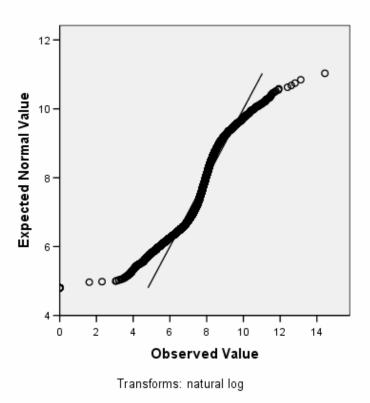
Log of Box plot in R



Log of average Procedures

Is the Data Normal? Q-Q Plots

Normal Q-Q Plot of MP1_BILL

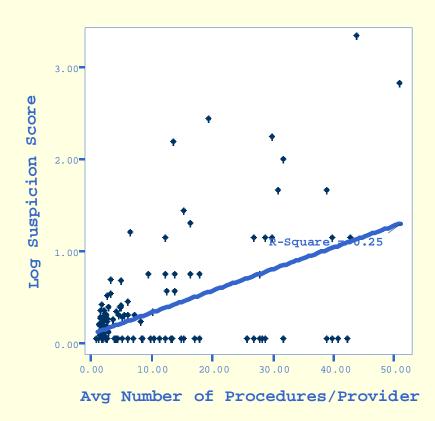


In Excel: Use Pivot Tables to Examine Relationship between Suspicion Indicator and Volume of Procedures for Provider (WC Data)

Average of Suspicion Score	
Percentile of Procedure Volun	Total
2	0.060
3	0.128
4	0.973
Grand Total	0.726

Regression

A Model of Relationship Between Suspicion Score and Avg Number of Procedures/Claimant for Provider (WC Data)



Linear Regression

Classical Statistics: Regression

 Estimation of parameters: Fit line that minimizes deviation between actual and fitted values

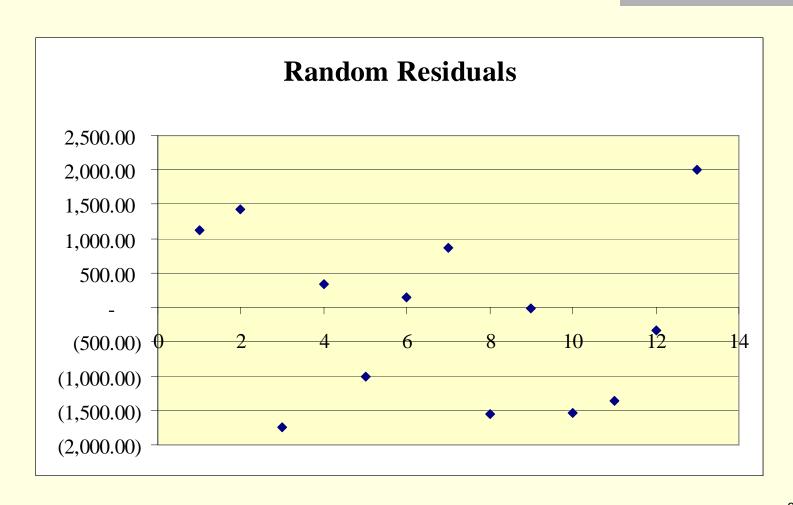
$$\min(\sum (Y_i - Y)^2)$$



Assumptions of Regression

- Errors independent of value of X
- Errors independent of value of Y
- Errors independent of prior errors
- Errors are from normal distribution
- Linearity

Random Residuals

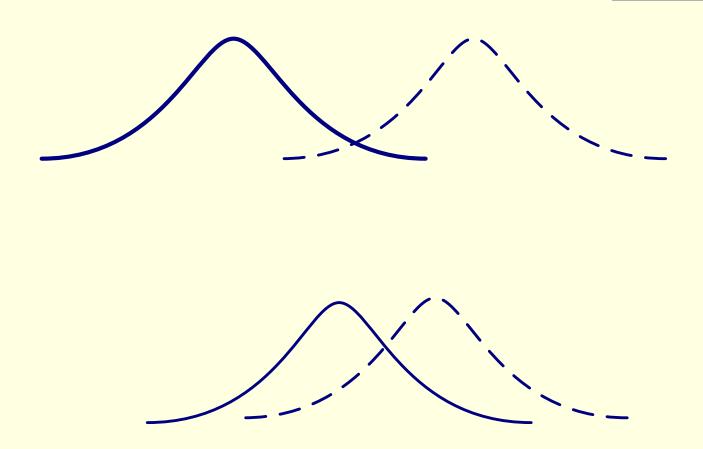


Discriminant Analysis

What is Discriminant Analysis?

- It is a procedure for identifying relationships between qualitative criterion and quantitative predictors.
- It identifies the boundaries between groups of objects
- The method has been used for classification problems for a very long time
- More recently it has been supplanted by logistic regression

Discriminant Analysis Predicts Class By Finding Variables that Separate Two Groups



The Discriminant Function and Its Use

The function uses a weighted combination of predictor values to distribute objects to one of the criterion groups

$$L = b_1 x_1 + b_2 x_2 + \mathbf{K} + b_k x_k$$

■ The various x values represent the predictor variables. The b values represent the weights that are associated with each of the variables.

Function and Use (cont.)

- To decide which values fall under which groups categories, a cutoff score is used.
- If the value of the discriminant function is higher than the cutoff score then it falls into one category and into the other if it is lower than the cutoff score.

Discriminant Analysis in Excel

- In some cases Discriminant Analysis can be done in Excel using the Regression function that is a part of the Data Analysis Tools Pack
- This can only be done if the dependent variable is binary

Example of Discriminant Analysis in Excel

- The dependent variable is the original suspicion score which is classified as either a 1 or a 0
 - It receives a 1 if the original score is greater than 0 and a 0 otherwise
- The two independent variables are the average number of procedures per claimant for one provider and the average cost of the procedures

Dummy Variables

- Dummy Variables are used for coding information about categorical variables
- In our example:
 - Procedure Dummy 1 equals 1 if Procedure equals 1 it equals 0 otherwise
 - Procedure Dummy 2 equals 1 if Procedure equals 2 it equals 0 otherwise
 - Procedure Dummy 3 equals 1 if Procedure equals 1, it equals 0 otherwise
 - Etc.
- Usually there is 1 fewer dummy variables than the number of categories.

Design Matrix with Dummy Variables

á	avgcost	avgprocedures	Procedure1	Procedure2	Procedure3	Procedure4	Procedure5	procedure6	procedure7
	264.78	3.13	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	264.78	3.13	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	264.78	3.13	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	264.78	3.13	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	264.78	3.13	0.0	0.0	0.0	0.0	0.0	0.0	1.0

Discriminant Analysis Example

Regression Statistics								
Multiple R	0.377486394							
R Square	0.142495978							
Adjusted R Square	0.141533452							
Standard Error	0.388115911							
Observations	8028							
ANOVA								
	df	SS	MS	F	ignificance	F		
Regression	9	200.7037035	22.3004	148.0437	8.5E-260			
Residual	8018	1207.783093	0.15063					
Total	8027	1408.486796						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.8074	0.0887	9.0977	0.0000	0.6334	0.9814	0.6334	0.9814
avgcost	0.0001	0.0002	0.7202	0.4714	-0.0002	0.0005	-0.0002	0.0005
avgprocedures	-0.0104	0.0005	-22.3658	0.0000	-0.0113	-0.0095	-0.0113	-0.0095
Procedure1	0.1596	0.0542	2.9450	0.0032	0.0534	0.2659	0.0534	0.2659
Procedure2	-0.1675	0.0777	-2.1546	0.0312	-0.3199	-0.0151	-0.3199	-0.0151
Procedure3	0.0666	0.0750	0.8883	0.3744	-0.0804	0.2137	-0.0804	0.2137
Procedure4	0.0277	0.1147	0.2418	0.8089	-0.1971	0.2525	-0.1971	0.2525
Procedure5	0.0305	0.0671	0.4539	0.6499	-0.1011	0.1620	-0.1011	0.1620
procedure6	0.0930	0.0663	1.4035	0.1605	-0.0369	0.2229	-0.0369	0.2229
procedure7	-0.0609	0.0588	-1.0350	0.3007	-0.1762	0.0544	-0.1762	0.0544

Classification Errors

- However, with this function also comes the possibility that although the calculation is correct the category into which the results is placed is not the right one.
- The smaller the difference between the two groups of the predictor variable, the larger the overlap and misclassification

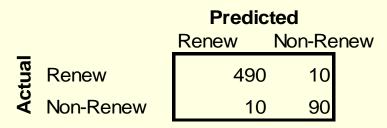
Errors of Classification

How Good is the Prediction?

- Very sophisticated methods can be ineffective when applied to real-life situations
- We usually hold out a portion of the data to use for testing. This data is not used at all in model fitting.
- The Question: How accurate is the model on the test data?

Testing the Validity of the Prediction

This can be done by using a confusion matrix. This matrix will show the errors and the accurate predictions



		Predicted				
		Renew	Non-Renev			
Actual	Renew	98%	2%			
Ac	Non-Renew	10%	90%			

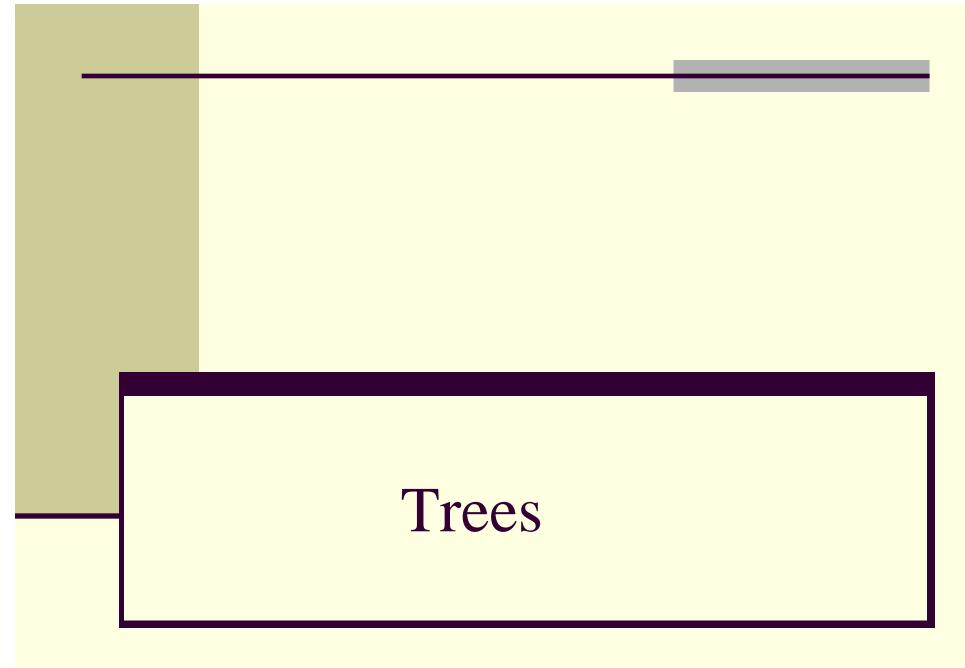
What is the Confusion Matrix telling Us?

- Sensitivity- The percent of true-positives that are accurately predicted
- Specificity- percent of true-negatives that are accurately predicted

		Predicted	
		Renew	Non-Renew
Actual	Renew	42.00%	58.00%
	Non-Renew	1.40%	98.60%

Examples of Bad Prediction

		Renew	Non-Renew	
Actual	Renew	98.00%	2.00%	
	Non-Renew	51.00%	49.00%	



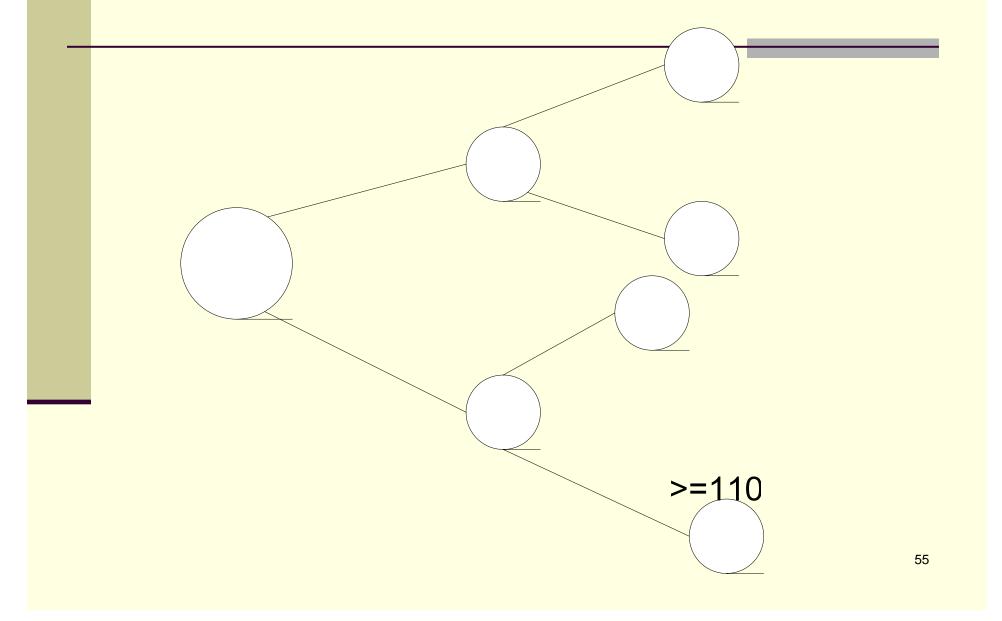
What are Trees?

- They are simple explanations of the data and the relationships within it
- They can be used for classification, prediction or estimation
- Trees divide data into subsets whose data is increasingly more similar.

How do they Work?

- The tree function tests all the possible splits on all of the possible independent variables
- Then it decides which gives the largest gains in goodness of fit and chooses this split
- To keep the tree from having useless branches, a full tree is diagrammed but then the branches that increase the error are removed from the tree
- When using categorical data the data is separated according to the answer to the question
- When using continuous data, it is split according to an average value as far away as possible from the other averages.

A Decision Tree



Independent Variable Importance

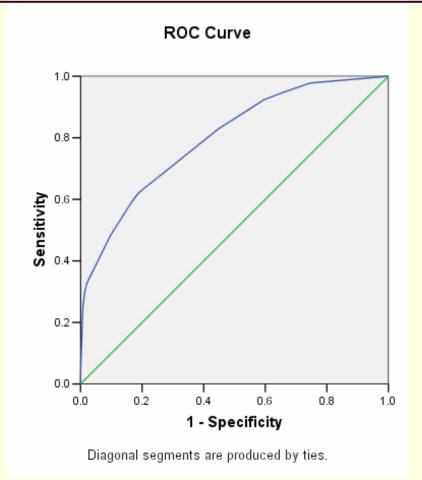
Independent Variable Importance

Independent Variable	Importance	Normalized Importance
Avg Number of Procedures/Provider	.046	100.0%
Procedure Code	.019	41.3%
avgcost	.000	.9%

Growing Method: CRT

Dependent Variable: suspicion_ind

ROC Curve



Confusion Matrix

Confusion Matrix

			Predicted Fraud Class		
			.00	1.00	Total
Actual Fraud	.00	Count	17566	3459	21025
Class		% within suspicion_ind	00.5%	16.5%	100.0%
	1.00	Count	4192	6007	10199
		% within suspicion_ind	41.1%	58.9%	100.0%
Total		Count	21758	9466	31224
		% within suspicion_ind	69.7%	30.3%	100.0%

Trees in Excel

Trees can also be made in Excel with the help of a program on the following site:

http://www.geocities.com/adotsaha/CTree/CtreeinExcel.html

Library for Getting Started

- Dahr, V, Seven Methods for Transforming Corporate into Business Intelligence, Prentice Hall, 1997
- Berry, Michael J. A., and Linoff, Gordon, *Data Mining Techniques*, John Wiley and Sons, 1997, 2003
- Find a comprehensive book for doing analysis in Excel such as: John Walkebach, *Excel 2003 Formulas* or Jospeh Schmuller, Statistical Analysis With Excel for Dummies
- If you use R, get a book like: Fox, John, An R and S-PLUS Companion to Applied Regression, Sage Publications, 2002
- Francis, L.A., Neural Networks Demystified, *Casualty Actuarial Society Forum*, Winter, pp. 254-319, 2001. Found at www.casact.org
- Francis, L.A., "Taming Text: An Introduction to Text Mining", CAS Winter Forum, March 2006, www.casact.org
- Francis, L.A., Martian Chronicles: Is MARS better than Neural Networks? Casualty Actuarial Society Forum, Winter, pp. 253-320, 2003.