

Who first proved Bayes' Theorem?

- From "Who Discovered Bayes's Theorem? By Stephen Stigler (*American Statistician*, November 1983)
- The posterior odds favor Nicholas Saunderson 3:1 over Thomas Bayes.

Who published Bayes' Theorem?

- After his death, Bayes willed some money and his papers to Richard Price, who arranged to have the Theorem published by the Royal Society in 1764.
- Richard Price later become a consultant to the Equitable Life Insurance Society and published "Observations on Reversionary Payments." His nephew, William Morgan was the first actuary in both name and title (*From Actuarius to Actuary*, Robert Mitchell, SOA, 1974).

Why Bayes? – The problem

- Today's problem
 - A random sample from some probability distribution.
 - The name of the distribution is known, but not its parameters.
 - Three goals are:
 - Estimate the parameters and then a quantity of interest, such as a layer cost.
 - Place a confidence interval on the estimate.
 - Determine a prediction interval for the next observation.

Confidence interval vs. prediction interval

- A confidence interval places bounds on the expected value. It gives the accuracy of a pure premium calculation, reflecting estimation error.
- A prediction interval places bounds on the payment from the next policy sold. The mean is the same as the confidence interval, but process error is incorporated.

Why Bayes? – The frequentist solution Use an optimization technique to estimate the parameters. Use asymptotic theory to understand the variances. Assume a normal distribution. The approximations in the last two items may be too crude. They also are not always easy to obtain.

Simple example

- Twenty simulated observations from a lognormal(7,1.5) distribution.
- Goal is to estimate the two parameters and the mean and then obtain confidence and prediction intervals.
- The lognormal distribution is among the easiest to work with because the information matrix is easy to obtain.
- The frequentist formulas are in Loss Models, 2nd ed., 353-358.

Frequentist numbers

- The parameter estimates are $\mu = 7.301$ and $\sigma = 1.624$.
- The estimate of the mean is 5,537.
- A 90% normal based confidence interval is 1,085 to 9,989.
- A 90% normal based prediction interval is -27,562 to 38,636.
- [For this problem we would know that many of the shortcomings could be solved by working with ln(x)].

So why not Bayes?

- Many people are uncomfortable with a prior distribution.
- The mathematics of the exact solution can be challenging. For example, a direct solution of a problem with three parameters requires triple integrals of an unpleasant function.

Solution

- Use a prior distribution that implies as little prior knowledge as possible.
- Either solve the computational problem by making it discrete rather than continuous, so sums become integrals, or use special software.
- I will illustrate both approaches.

Bayesian estimation

Let θ be the vector of unknown parameters.
Let f(x|θ) be the known distribution.
Let x₁,...,x_n be n independent observations from that distribution.
Let π(θ) be the prior distribution on the parameters.

$$\pi(\theta \mid x_1, \dots, x_n) = \frac{f(x_1 \mid \theta) \cdots f(x_n \mid \theta) \pi(\theta)}{\int f(x_1 \mid \theta) \cdots f(x_n \mid \theta) \pi(\theta) d\theta}$$

where the integral is replaced by a sum if the parameters have a discrete distribution.

Estimating a function of the parameters

•Suppose our goal is to estimate $g(\theta)$, a function of the parameters.

•We need the posterior distribution of that function. But just attach the posterior probabilities to each value. The Bayes estimate is:

 $\widehat{g(\theta)} = \int g(\theta) \pi(\theta \mid x_1, \dots, x_n) d\theta$

•The *p*th percentile solves (using the posterior distribution).

 $p = \Pr[g(\theta) \le x \mid x_1, \dots, x_n]$

ognormal values					
	Frequentist	Discrete Bayes			
û	7.301	7.301			
$\hat{\sigma}$	1.624	1.777			
Mean	5,537	9,932			
Confidence Interval	1,085 to 9,989	2,922 to 26,937			
Prediction Interval	-27,562 to 38,636	72 to 30,423			

Continuous priors

- With continuous priors the sums become integrals.
- For a long time there was no easy way to do the calculations.
- Now there is Markov Chain Monte Carlo.
- The essence is on the next slide.

МСМС

- The goal is to simulate observations from the posterior distribution.
- These simulated values become the posterior distribution.
- The simulation is accomplished by using a sequence of conditional distributions. That is, simulate a value of one unknown parameter by conditioning not only on the data but also on the other parameters.

WinBUGS

- This is a free program that performs MCMC analysis.
- You can write code or have code generated from a graphic representation of the model.
- For the lognormal model I have selected priors with huge variances. They are normal(0, 1,000²) for μ and gamma(0.001, 1,000) for 1/σ².
- WinBUGS can also generate the predictive distribution and the posterior distribution of functions of the parameters.

WinBUGS code

model;

```
{ mu ~ dnorm( 0.0,1.0E-6) <sets prior on mu>
   sigma ~ dgamma(0.001,0.001) <sets prior on the
   reciprocal of the variance>
   for( i in 1 : 20 ) {x[i] ~ dnorm(mu,sigma)}
   for( i in 1 : 20 ) {x[i] <- log(y[i])} <The
   observations are from the lognormal distribution>
   s <- 1/sqrt(sigma) <defines s as the std dev>
   m <- exp(mu+s*s/2) <defines the mean>
   p ~ dnorm(mu,sigma) <these two set the predictive
   value>
ep <- exp(p)}</pre>
```

WinBUGS results						
	Frequentist	Discrete Bayes	WinBUGS			
μ̂	7.301	7.301	7.301			
ô	1.624	1.777	1.735			
Mean	5,537	9,932	10,330			
Confidence	1,085 to	2,922 to	2,806 to			
Interval	9,989	26,937	24,330			
Prediction	-27,562 to	72 to	77 to 28,230			
Interval	38,636	30,423				
			1 80000			

COTOR Challenge

- Round 3 offered the following problem.
- Data from a heavy-tailed distribution has been collected over 7 years; 70 observations each year.
- The distribution type does not change over time, nor do non-scale parameters.
- The scale parameter changes according to inflation.
- Determine point estimates and CI and PIs for 500x500 in year 8.

Disclaimer

- I picked the model, a 70-30 mixture of Pareto and Exponential along with a random process to generate inflation rates.
- The 490 observations were simulated from that model.
- My analysis relies somewhat on this inside knowledge.

A strategy

- Use traditional frequentist techniques to pick the winning model. This tends to flow better than Bayesian approaches. My choice is the Schwarz Bayesian Criterion.
- Use a Bayesian analysis to get the requested estimates.
- This approach in one form or another was adopted by many of the COTOR participants.

Name	InL	Params	SBC	rank
logn-geom	-5533.06	3	-5542.35	4
Pareto-quad	-5527.71	4	-5540.1	2
Pareto-geom	-5527.84	3	-5537.13	1
logn-exp-geom	-5527.05	5	-5542.53	5
Pareto-exp-quad	-5526.02	6	-5544.6	6
Pareto-exp-geom	-5525.99	5	-5541.48	3

Winning model

- A single Pareto distribution.
- The parameters are 1.071 and 6,232.
- The inflation rate is 0.1697 and thus the scale parameter in year *i* is 6232exp(.1679**i*).
- A 20x20x20 discrete Bayes analysis produced 1.071, 6,427, and 0.1652.
- A WinBugs analysis with vague priors produced 1.069, 6,228, and 0.1722.

Layer costs

•For a Pareto distribution, the layer cost is

•The (discrete) posterior mean is 12,970 and the 5th and 95th percentiles are 8,234 and 18,846. This forms the confidence interval for the expected cost of the layer.

•The true answer is 12,735.

References

- WinBUGS (free) is available at <u>http://www.mrc-bsu.cam.ac.uk/bugs/</u>
- A good introduction to MCMC and WinBUGS is *Actuarial Modeling with MCMC and BUGS*, D. Scollnik, 2001, *NAAJ*, 96-125.
- http://www.math.ucalgary.ca/~scollnik/abcd/ has additional worked examples with BUGS code that follow up the ideas in his paper.
- The WinBUGS files and EXCEL sheets for my examples are available by request to me at stuart.klugman@drake.edu.