Applying GLMs in Non-traditional Areas 2003 CAS Ratemaking Seminar Claudine Modlin, FCAS Watson Wyatt Insurance & Financial Services Inc

WWW.WATSONWYATT.COM/PRETIUM

100

Non-traditional uses of GLMs

- Background on traditional claims modeling for ratemaking
- Variations on claims modeling
 - profitability scores
 - sales channel analysis
- Uses in reserving
 - projecting loss triangles
 - initial reserve estimates

Non-traditional uses of GLMs

- Background on traditional claims modeling for ratemaking
- Variations on claims modeling
 - profitability scores
 - sales channel analysis
- Uses in reserving
 - projecting loss triangles
 - initial reserve estimates

Generalized linear models

- Statistically measure the effect that variables have on an observed item
- In insurance, most often used to determine the effect rating variables have on claims experience

Generalized linear models

$E[\underline{Y}] = \underline{\mu} = g^{-1}(\underline{X}.\underline{\beta} + \underline{\xi})$ $Var[\underline{Y}] = \phi V(\underline{\mu}) / \underline{\omega}$

- Consider all factors simultaneously
- Allow for nature of random process
- Robust and transparent
- EU industry standard

Why GLMs over other methods

- One-way and two-way analyses
 - distorted by correlations, no diagnostics
- Iteratively standardized one-ways
 - no diagnostics, no faster than GLMs, less flexibility for allowance of random process, not always tractable solution

Neural networks

- not transparent, hard to interpret, can be unstable with new types of policy, easy to over/under fit
- Cluster analyses / "segmenting"
 - suitable for marketing but less appropriate for assessing continuous risk; does not fit with rating structures

Modeling the cost of claims

Example of GLM output (real UK data)

Example of GLM output (real UK data)

Nontraditional uses of GLMs

- Background on traditional claims modeling for ratemaking
- Variations on claims modeling
 - profitability scores
 - sales channel analysis
- Uses in reserving
 - projecting loss triangles
 - initial reserve estimates

Factor effect analysis

Example job

Run 11 Model 1 - Unrestricted risk premium run, third party material damage - Smoothed standard risk premium model

2 s.e. from estimate — Unrestricted and unsmoothed estimate — Current rating structure

Factor effect analysis

Example job

Run 11 Model 1 - Unrestricted risk premium run, third party material damage - Smoothed standard risk premium model

What if rates cannot be changed?

Profitability scoring

- Construct profitability score based on expected loss ratio
- Profitability score can then be used for
 - target marketing campaigns
 - agent incentive schemes
 - profit share arrangements

Producing the score

Model E(LR)

- fit standard GLMs by claim type, separately for frequency and severity
- combine to give expected risk premium model
- for each record populate fitted risk premium and divide by annualized premium
- fit model to this value
- Transform additive structure into scoring algorithm (eg 0 to 1000) which can be banded

Example dataset

						<u>Ann</u>				<u>E(RP)</u>
<u> Risk #</u>	Territory	<u>Age</u>	<u>ECY</u>	<u># Claims</u>	Losses	<u>Prem</u>	<u>E(N)</u>	<u>E(A)</u>	<u>E(RP)</u>	<u>/Prem</u>
									(9) =	(10) =
	<u>(1)</u>	<u>(2)</u>	<u>(3)</u>	<u>(4)</u>	<u>(5)</u>	<u>(6)</u>	(7)	(8)	(7)*(8)	(9)/(6)
1	1	25	1	0	-	206	0.07	1800	130	0.63
2	4	54	1	0	-	136	0.05	1700	90	0.66
3	4	37	1	1	1,200	172	0.06	1675	105	0.61
4	3	40	0.5	0	-	142	0.07	1400	94	0.66
5	9	19	1	0	-	254	0.10	1800	180	0.71
6	1	65	1	0	-	148	0.05	1850	92	0.62
7	3	42	1	2	42,000	188	0.08	1850	145	0.77
								1		

Underlying models

Example dataset (cont'd)

<u>E(RP)</u>	<u>Modeled</u>		
/Prem	<u>E(LR)</u>	<u>Score</u>	<u>Tier</u>
(10) =			
(9)/(6)	(11)	(12)	(13)
0.63	0.63	85	3
0.66	0.65	76	4
0.61	0.62	95	1
0.66	0.66	75	4
0.71	0.69	63	5
0.62	0.62	92	2
0.77	0.75	55	6
1			

Fit model to this

Number of policies — Actual loss ratio

Case study: UK bank

- Distributed insurance products underwritten by a partner insurance company
- Bank could not easily change rates
- Bank shared in insurance profit
- Bank derived profitability score based on banking factors which were not available at point of sale
- Score then used to market insurance selectively to banking customers

Non-traditional uses of GLMs

- Background on traditional claims modeling for ratemaking
- Variations on claims modeling
 - profitability scores
 - sales channel analysis
- Uses in reserving
 - projecting loss triangles
 - initial reserve estimates

Sales channel analysis

- GLMs can help distinguish between effect on profit of
 - mix of business written through a particular channel
 - effect of channel itself
- Simply compare one-way for channel with GLM for channel - the rest results from mix of business

Identifying mix of business

Sales Channel Analysis

Driver Age

■ < 20 ■ 20-24 ■ 25-29 ■ 30-39 ■ 40-49 ■ 50-59 ■ 60-74 ■ 75+

Identifying cross-subsidies

Sales Channel Analysis

Compare one-way to GLM

Sales Channel Analysis

Oneway relativities —— Approx 2 s.e. from estimate —— Unsmoothed estimate

Non-traditional uses of GLMs

- Background on traditional claims modeling for ratemaking
- Variations on claims modeling
 - profitability scores
 - sales channel analysis
- Uses in reserving
 - projecting loss triangles
 - initial reserve estimates

Projecting loss triangles

- Attribute discrete claims development to
 - loss or underwriting period
 - development period
 - calendar period

- Care needs to be taken not to over parameterize - there are few observations relative to the number of levels of the three factors
- Make assumption about future calendar years

Projecting loss triangles

- Group loss/underwriting & calendar periods where possible and appropriate
- Consider use of
 - polynomials for

- development factor (fewer parameters)
- piecewise linear functions for calendar year factors
- Examine diagnostics carefully

Non-traditional uses of GLMs

- Background on traditional claims modeling for ratemaking
- Variations on claims modeling
 - profitability scores
 - sales channel analysis
- Uses in reserving
 - projecting loss triangles
 - initial reserve estimates

Initial reserve estimates (a priori)

- Standard ratemaking model
 - when applied to a portfolio of business will give an a priori expected loss
 - could be used with Bornhuetter Ferguson, etc

Initial reserve estimates (once reported)

- Model based on information supplied the moment a claim is reported
- Can use claim information such as
 - number of people in vehicle
 - whether anyone declared injured
- This model can then be applied to all recently reported claims to derive a revised reserve estimate

Initial reserve estimates (further development)

- Model based on information supplied later in the life of a claim
 - adding information such as lawyer representation

Important not to double (or triple) count these measurements

Non-traditional uses of GLMs

- Background on traditional claims modeling for ratemaking
- Variations on claims modeling
 - profitability scores
 - sales channel analysis
- Uses in reserving
 - projecting loss triangles
 - initial reserve estimates

Applying GLMs in Non-traditional Areas 2003 CAS Ratemaking Seminar Claudine Modlin, FCAS Watson Wyatt Insurance & Financial Services Inc

WWW.WATSONWYATT.COM/PRETIUM

100