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When risk management is impeded by incomplete 

information of variables of interest, the best way to 

estimate probabilities of extreme events is: 

Find the 100% confidence interval of Value-at-Risk 

(VaR), i.e., semiparametric upper and lower bounds! 

Moment Method 

Motivation 



• Introduced in 1994, widely used to estimate the largest 
potential loss or smallest potential return that  an 
investment may suffer during an extreme event with a 
given likelihood                  .  
 

• Incorporated in the Basel II Capital Accord in June 2004 
[Kaplanski and Levy, 2007].  

Value-at-Risk (VaR) 

(0,1)



Value-at-Risk (VaR) 
Given a confidence level αϵ (0,1)(e.g., α=1%, 5%, etc.),  VaR is 
defined as:  

( ) min{ | Pr( ) }VaR X X     

For the return variable X: 

                    is the smallest number β such that the probability that the return X 
no higher than β is at least α. (Left tail VaR) 

( )VaR X

( ) min{ | Pr( ) }VaR L L     

For the loss variable L: 

                    is the smallest number β such that the probability that the loss L 
exceeds β is at most α. (Right tail VaR) 

( )VaR L



What we do? 



General Form of Moment Problems 

 

    

   where X is a set of random variables with  
specified support and moments. 

These semiparametric bounds are useful in risk 
analysis where there is only incomplete information 
concerning the a random variable. 



An Example 

where 

According to the Tchebyshev’s Inequality: 



Overview 

Major work 
Find bounds on univariate distributions given moment 

information with/without unimodal assumption.  

Present a simplified maximum-entropy method to construct a 
representative distribution given moments. 

Find bounds on bivariate distributions with specific forms 
given mean, variance, and covariance of variables. 

Joint probability bounds 

VaR probability bounds 

Bounds on stop-loss payments 
 

 

 
 

We solve moment problems to find bounds 
on Value-at-Risk (VaR).  



Overview 
Numerical examples 

Calculate value-at-risk for downside risk management. 
Insurance loss 

Asset return 

Bounds on  

Bounds on 

Define risk-neutral probability for asset pricing using 
maximum-entropy method. 

Robustness check 
Relationship between bounds and the number of moments 

considered; 

Sensitivity of the bounds to the estimated moments. 

 
 



Literature Review 

• Theories 
– Hilbert (1888) 
– Karlin and Studden (1966) 

• Tchebycheff system and its applications in analysis and 
statistics. 

– Diananda (1962) 
– Second-order Cone Programming (SOCP) 

• Lobo et al. (1998), Ben-Tal and Nemirovski (2001), and 
Alizadeh and Goldfarb (2003) 

 



Literature Review 
• Univariate Moment Problems 

– Royden (1953), Brockett and Cox (1985), Lo (1987), Heijnen 
(1990), and Courtois, Denuit (2006), and Schepper and Heijnen 
(2007) 
• Explicitly solve moment problems given two to four 

moments  
– Parrilo (2000), Wolkowicz, Vandenberghe and Saigal (2005), 

Bertsimas and Popescu (2005) 
• Numerically solve moment problems using SOS programming 

solvers 

• Bivariate Moment Problems 
– Far less complete than univariate moment problems 
– Courtois and Denuit (2008), Kaas et al. (2009), Valdez et al. 

(2009), Cox et al. (2010), etc. 
• Solve problems with special forms of objective functions, 

e.g., sum of variables, two correlated variables, etc. 
 



Primal Problem (Univariate) 

 

 

subject to the same moment constraints.  

Lower bound 

Upper bound  



Primal Problem (Univariate) 

 

 

 

 

where 

and 



Feasibility (Smith (1990)) 
• There are random variables with given moments if and only if M2n is PSD. 

– If M2n is PD (non-degenerate), one can find infinite number of distributions to match the 
moments. 

– If | M2i |>0 for i=1,2,…n-1 and | M2n |=0 (degenerate), a unique distribution matches the 
moments. 

 

 

 

In our applications, feasibility is not a problem because we 
use a real sample to estimate moments so the empirical 
distribution has those moments and the problem is always 
feasible. 



Dual Problem (Univariate) 

 

 

Upper bound  

Lower bound  



Strong Duality Proposition 

   The primal and dual problems are equivalent in 
term of their solutions, if one can find a solution 
that strictly satisfies (i.e., with > (or <)) the 
constraints in the dual.  

As long as Ф(x) is bounded, one can find feasible solutions to make 

the constraint strictly hold. 

Strong duality is satisfied as follows:   

The dual solution              (or              for the 

lower bound), and                            strictly 

satisfied the constraints.  

So:  

Consider 



PSD and SOS 

Obviously, for any choice                , a SOS polynomial is a PSD 
polynomial on I. And it is a classical result that the converse is true 
for              ; namely: 



SOS Program 

 
A SOS program is an optimization program where the  
variables are coefficients of polynomials, the objective is  
a linear combination of the variable coefficients, and the  
constraints are given the polynomials being SOS. 

 

Subject to 



SOS Programming 

Primal Problems 

Equivalency between 
PSD and SOS for 
univariate problems 

Solve problems with a SOS programming solvers such as 
SOSTOOLS , GloptiPoly or YALMIP. 

Dual Problems 

Formulate the duals as SOS programs 

Strong duality 



Bounds for Unimodal Distribution 

A continuous-type random variable X is unimodal with 
mode m if it satisfies one of the following two 
equivalent conditions:  

 

We solve bounds for unimodal distribution by formulating 
the unimodal problems as general bounds problems after 
an appropriate transformation. 



Unimodal Bounds Problems 

Objective: 

Moment constraints: 



Unimodal Bounds Problem 

 

 

 

 

 

 

 

 

 

 

 

Upper bound  

subject to the same moment constraints.  

Lower bound 
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Maximum-Entropy Method  

• A method to construct representative 
distribution with given moments. 

The optimal solution f*(x) is called maximum-entropy distribution.    



Maximum-Entropy Method  

• Maximum-entropy distribution can be written as: 

 

 

 

• The optimization problem can be solved using a 
modified Newton method (Luenberger 1984). 

 



Bounds on Insurance Margins 

The margin (M) on a line of insurance business is 
defined as 

where 

is the loss ratio and 

is the expense ratio. 





General Bounds and Maximum-Entropy Distributions 

Adding more moment 
constraints tightens the 
bounds on Pr(X≤t), but not 
uniformly with t. 



Bounds on Value at Risk 

The red line represents 

the lower bound. The 

blue line represents the 

upper bound. The 

green line in the middle 

is the true empirical 

distribution F(x).  



Bounds on Asset Returns 
We analyze stock returns by considering the following three 
scenarios, i.e., a period before the Great Recession, the 
Recession period, and the post recession period. 

Statistics of AIG Stock Daily Return  



Period a. Period b. Period c. 

Histogram for AIG 

The histograms show that AIG has a unimodal 
distribution in all three periods.  





Bivariate Moment Problems 



Bivariate Moment Problems 



Theorem Preparation 



SOS Program (Multivariate) 



Primal and Dual Problems 



Feasibility and Strong Duality 







AIG Example 

The upper left plot shows the upper bound of                                  . The upper 
right one is the CDF of bivariate normal with the same moments as AIG. The 
ratio of the upper bound to the bivariate normal CDF is shown in the third 
graph. The vertical axis of the graphs is probability. It is the ratio in the third 
graph. 



AIG Example (Continued) 

The higher curve is the upper 
bound on                              . 
The lower curve is the CDF of 
bivariate normal with the 
same moments 
as AIG.  

x-axis stands for t1. And t2 is fixed 
at                            where k = 0.25, 
0.5, . . . , 1.5, with k = 0.25 on the 
upper left and running to the 
right and then down. 



Bounds on                               . The left and right graphs show bounds with 
covariance of X1 and X2 equals 0.5 and -1, respectively. The vertical axis 
stands for probability, and the horizontal axis is the number of 
standard deviations from the mean, z. That is: 

Bounds on Joint Right-Tail Events 





We analyze the tail joint probability of total return of a portfolio 
investing in the S&P 500 Index and the Dow Jones U.S. Small-Cap 
Index. 

Let X1 and X2 be the log-return of the S&P 500 Index and Dow Jones 
U.S. Small-Cap Index in percentage per day. 

For day t:   Xi(t) =100 log(Si(t+1)=Si(t))  
Their moments are as follows: 



Suppose we invest 1/3 of our assets in the S&P 500 Index, 1/3 
in the Dow Jones U.S. Small-Cap Index, and 1/3 in a risk-free 
fund paying a flat 0.01 percent per day. Thus, our portfolio 
daily return is: 

1 2

1 1 1
0.01

3 3 3
X X 

We now calculate the upper and lower bounds for the 
probability when the portfolio return falls  



The lines with —o— and —*— represent the upper and lower bounds on the 
VaR probability, without and with using the exchange option information. 



The figure on the previous slide gives us an idea of how 
likely the return of this portfolio will be lower than a in 1 
day under different conditions. 
 

With the exchange option information (—*— curves): 

Without the exchange option information (—o— curves): 



Maximum-Entropy Risk Neutral Probability 

Li (2010) suggests to using the maximum-entropy approach to 
calculate risk neutral probabilities for asset pricing. 

Consider a market with n assets, whose prices at time 0 are: 
                                                                         .                     
Assume there are m states of nature and discounted by the risk-
free rate, the payoff of asset i in state j is  
 
 

Let      be the physical probability measure and       be an 
equivalent risk neutral probability measures. The martingale 
measure      can be chosen by minimizing the Kullback-Leibler 
(Kullback and Leibler, 1951) information criterion 



Maximum-Entropy Risk Neutral Probability 



Pricing An European Call Option 

Consider a non-dividend paying stock (Stock A) whose price follows a geometric 
Brownian motion with spot price S0 = 20, volatility  σ= 0.15, and rate of return 
μ= 0.08. We further assume that the risk-free rate is rf = 0.04. 

We first simulate the stock price at T: 

We then solve the Maximum-Entropy risk neutral problem with one price 
constraint where μ1 = S0 = 20. 





Pricing An European Call Option 

Consider an European call option written on stock A with strike price K = 18 
and exercise time T = 1. Based on the risk neutral measure and the present 
value of the call option 
 
 
we calculate the value of the call option as: 
 
 
 
where m = 10, 000 for our case. Our estimation of the value of the call option 
from the maximum-entropy distribution is 2.94. While following the Black-
Scholes model, the value of the call is 2.95. 



Robustness Check 

• Does it matter how many moments are 
considered to calculate bounds? 
– Check the bounds accuracy with known 

distribution 

• Stability experiments 
– Examine the sensitivity of bounds with respect to 

moment estimates by altering the data sample 
sizes. 
• Long-tail distribution – Pareto with α=5 (or α=1), θ=10.  

• Sample size n=25, 100, 500, and 1000. 

 



General and unimodal Bounds on Beta Distribution  
(a = 2, b = 3 and θ = 5) 

The improvement of 
bounds wears out after 
4 or 6 moments. 



Stability Analysis 
General bounds on 

for Pareto distribution with  α= 5 and  θ= 10, given 4 moments. 

25 obs. 100 obs. 

500 obs. 1000 obs. 



Stability Analysis (Continued) 
General bounds on 

for Pareto distribution with  α= 1 and  θ= 10, given 2 moments. 

25 obs. 100 obs. 500 obs. 

This distribution has no finite raw moments. We calculate the upper and lower bounds 
on the distribution based on the “non-existent” moments approximated from samples.  

A big proportion of the lower bound 
dots fall above the true distribution. 



Stability Analysis (Continued) 

• Larger samples make the bounds estimation 
more reliable and accurate. 

• Reliable bounds could be provided when 
samples with more than 500 observations are 
analyzed.  

• Moment method can be used to detect the 
existence of higher moments. 



Conclusion 

We solve univariate and bivariate moment problems 
numerically with SOS programming solver. 

– Calculate semiparametric upper and lower general bounds 
by reformulating problems as SOS programs.  
• Provide the best bounds on Value-at-risk given moment information. 

– Compute the improved bounds on a distribution when the 
unimodal assumption is added. 
• Effectively narrow the general bounds. 

– Construct Maximum-Entropy distribution with given 
moments.  
• Provide a representative distribution which has given moments, but 

otherwise uses as little information as possible. 

• Price assets with Maximum-Entropy risk neutral probabilities. 



Conclusion (Continued) 

– Analyze two bound problems on bivariate distributions 

• “100% confidence intervals” on extreme events given moments 
and support 

• Bounds on the sum of two variables given moments and 
support.  

– Other possible applications of our approach 

• Default probabilities 

• Prices of different fix-income securities 

• Inventory and supply chain management 

• Sensitivity analysis of the joint probabilities and VaR estimates 
to model misspecification 

 



Questions? 

Thank you for your attention! 


