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Motivation

When risk management is impeded by incomplete
iInformation of variables of interest, the best way to
estimate probabilities of extreme events Is:

Moment Method

Find the 100% confidence interval of Value-at-Risk
(VaR), I.e., semiparametric upper and lower bounds!




Value-at-Risk (VaR)

* |Introduced in 1994, widely used to estimate the largest
potential loss or smallest potential return that an
investment may suffer during an extreme event with a
given likelihood a € (0,1).

* |ncorporated in the Basel Il Capital Accord in June 2004
[Kaplanski and Levy, 2007].




Value-at-Risk (VaR)

Given a confidence level ae€ (0,1)(e.g., a=1%, 5%, etc.), VaR is
defined as:

For the return variable X:
VaR_ (X)=min{f|Pr(X < B) > a}

VaR (X)) is the smallest number B such that the probability that the return X
no higher than B is at least a. (Left tail VaR)

For the loss variable L:
VaR (L) =min{fg|Pr(L= p)<a}

VaR, (L) is the smallest number B such that the probability that the loss L
exceeds B is at most a. (Right tail VaR)




What we do?
Pr(X < xo)

0
Confidence IV of Pr(X < xp)

0

100% confidence IV of Pr{X < xp)

0

Bounds on E(Ix<,)-




General Form of Moment Problems

max (or min) E[¢(X)]

where X is a set of random variables with
specified support and moments.

These semiparametric bounds are useful in risk
analysis where there is only incomplete information
concerning the a random variable.




An Example

According to the Tchebyshev’s Inequality:

1
Pr(|z — p| = ko) = E(o(X)) < =

max Elo(X)]
where the support is over all X subject to

E[X] = pu,

AR 1
E[(X —p)?] =0 The solution is =

1 if |z — p| = ko,

0 if |z —p| < ko
\




Overview

We solve moment problems to find bounds
on Value-at-Risk (VaR).

JdMajor work

JFind bounds on univariate distributions given moment
information with/without unimodal assumption.

dPresent a simplified maximum-entropy method to construct a
representative distribution given moments.

JFind bounds on bivariate distributions with specific forms
given mean, variance, and covariance of variables.

Joint probability bounds
(dVaR probability bounds
(JBounds on stop-loss payments




Overview
INumerical examples

(dCalculate value-at-risk for downside risk management.

WInsurance loss

JAsset return

Bounds on Pr(X1 <t and X, < tp)
dBounds on Pr(w X, + wuXp < a)

dDefine risk-neutral probability for asset pricing using
maximum-entropy method.

(JRobustness check

dRelationship between bounds and the number of moments
considered;

Sensitivity of the bounds to the estimated moments.




Literature Review

e Theories

— Hilbert (1888)

— Karlin and Studden (1966)

* Tchebycheff system and its applications in analysis and
statistics.

— Diananda (1962)

— Second-order Cone Programming (SOCP)

* Lobo et al. (1998), Ben-Tal and Nemirovski (2001), and
Alizadeh and Goldfarb (2003)




Literature Review

e Univariate Moment Problems

— Royden (1953), Brockett and Cox (1985), Lo (1987), Heijnen
(1990), and Courtois, Denuit (2006), and Schepper and Heijnen
(2007)

* Explicitly solve moment problems given two to four
moments

— Parrilo (2000), Wolkowicz, Vandenberghe and Saigal (2005),

BeWL
. merically solve moment problem?® using SOS programming

solvers

* Bivariate Moment Problems
— Far less complete than univariate moment problems

— Courtois and Denuit (2008), Kaas et al. (2009), Valdez et al.
(2009), «mmn etc.

e Solve problems with special forms of objective functions,
e.g., sum of variables, two correlated variables, etc.




Primal Problem (Univariate)
Upper bound
p = mpx | 6(a)dF(a)
subject to /E ' dF(z) = p;, foralli=1,2,... n,

and 7 C R

Lower bound
p — min / dlz) dF(x)
S

subject to the same moment constraints.




Primal Problem (Univariate)

where

r“'

| 1 forallx <t
d(x) = < rel.
0 forallx =1

,

and

T =(-oc,a|l,Z =la,b],T = [b,+00) and T = (—o0, +00)




Feasibility (Smith (1990))

* There are random variables with given moments if and only if M2n is PSD.

— If Mznis PD (non-degenerate), one can find infinite number of distributions to match the
moments.

— If | Ma2i |>0 for i=1,2,...n-1 and | M2n |=0 (degenerate), a unique distribution matches the
moments.

Ho M1 ... Hy
251 f2 S |

Hn Hpgl o .o H2n

Ms,, =

= (n+41) = (n+1)

In our applications, feasibility is not a problem because we
use a real sample to estimate moments so the empirical
distribution has those moments and the problem is always
feasible.




Dual Problem (Univariate)

Upper bound

subject to p(x) > ¢(x), forallz €7,
where p(z) = > 7 a;z.

Lower bound

Z aifhi

subject to p(z) < ¢(z), forallz € 7.

iy "511




Strong Duality Proposition

The primal and dual problems are equivalent in
term of their solutions, if one can find a solution
that strictly satisfies (i.e., with > (or <)) the
constraints in the dual.

As long as @(x) is bounded, one can find feasible solutions to make
the constraint strictly hold.

Consider L .
( ; Strong duality is satisfied as follows:
1, Vao<d
Olr) = 4 - The dual solution ap > 1 (or ap < 0 forthe
0, Va>d lowerbound),and a; =0 fori # 0 strictly

satisfied the constraints.

So: P=dor p=d




PSD and SOS

Definition 1. A polynomial g(z) € Rz| is a sum of squares (SOS) polynomial if there exist poly-

nomials g:(x) € Rz] so that g(z) = > [g:(x)]".

2

Definition 2. A polynomial g(x) € R[z] is positive semidefinite (PSD) onZ C Rif g(z) > 0 for all

el

Obviously, for any choice 7 C IR, a SOS polynomial is a PSD
polynomial on I. And it is a classical result that the converse is true

for 7 — R ; namely:

g(x) is a (univariate) PSD polynomial on R <= g(z) is a SOS polynomial.




SOS Program

A SOS program Is an optimization program where the
variables are coefficients of polynomials, the objective is

a linear combination of the variable coefficients, and the
constraints are given the polynomials being SOS.

max (min) ag+ aipiy + aspis + - + G fiy

LI O N B ]

Subject to

ap + a1 + apx® + - +a,r" — o(x) is SOS polynomial.




SOS Programming

Dual Problems

Primal Problems

Formulate the duals as SOS programs

Solve problems with a SOS programming solvers such as
SOSTOOLS, GloptiPoly or YALMIP.




Bounds for Unimodal Distribution

A continuous-type random variable X is unimodal with

mode m if it satisfies one of the following two
equivalent conditions:

(i) The cumulative distribution function F'(z) of X is convex for z < m and concave for

z > m in its support Z.

(ii} Khintchine (1938) Representation: There are independent random variables U/ and YV

such that X ~m 4+ UY, where U is uniformly distributed on [0, 1].

We solve bounds for unimodal distribution by formulating

the unimodal problems as general bounds problems after
an appropriate transformation.




Unimodal Bounds Problems

Objective:
1 y<t—m

(1) Inthiscase of t = m, ¢*(y) =X t —m

y=1t—m.

t—m
1— y<t—m
(2) In this case of t < m, ¢'(y) = Y

Moment constraints:
E[(TUY)'] =E[(X —m)’]

i =E[Y"] = (i +1) Z ( 1 ) i (—m)'




Unimodal Bounds Problem
Upper bound
p=max [ 6w dF@)
7
subject to / y dF*(y) = p!,  foralli =1,2,... n.
T

Lower bound

pt = min/ " (y)dF*(y)
Iq-

subject to the same moment constraints.




Maximum-Entropy Method

A method to construct representative
distribution with given moments.

b
max —fu fla)log flx) da

b
subject mf ' flx)dr =pu; foralli=0,1,...,n

flz) =0,

where pa, pr1, . .., pn 15 the given sequence of moments.

The optimal solution f*(x) is called maximum-entropy distribution.

23




Maximum-Entropy Method

 Maximum-entropy distribution can be written as:

fH(z) =exp(—1— S A"

* The optimization problem can be solved using a
modified Newton method (Luenberger 1984).




Bounds on Insurance Margins

The margin (M) on a line of insurance business is
defined as

M=1-LR-ER=1-CR,

where
Losses Incurred
LR = Famed premiums |5 the loss ratio and
ER — Expenses is the expense ratio.

~ Written premiums




Table 2: Empirical Statistics of Margin for Allied, PPauto, and Comp During 1980 and 2005

Allied  PPautc Comp

E(X) 7.32 402 1225
E{X?) 36061 33,85 200,79
E{X®) 1001100 24254 -3949.10
E(X ‘1} 49613000 220330 7744500
Maximum 20.30 603 0.50
Minimum -52.00 -11.03 -22.60
Range 72,30 17.06 23.10




General Bounds and Maximum-Entropy Distributions

General Bounds and M aximum -E ntropy Distribution for Allied
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Bounds on Value at Risk

- | — The red line represents
/ the lower bound. The
blue line represents the

upper bound. The
green line in the middle
IS the true empirical
distribution F(x).

Pr(X <z)=108

!

& £ F(&) <p(&) = a=p(&) < F(&)
P & < VaR, < &

VaRos

150 100 50 O 50 100 150




Bounds on Asset Returns

We analyze stock returns by considering the following three
scenarios, i.e., a period before the Great Recession, the
Recession period, and the post recession period.

a: 12 /2001-12 /2007

b: 01 /2008-06 / 2009
c: 07 /200007 /2012

Statistics of AlG Stock Daily Return

AlGa  AIGD AlG:e
E{X -G R2E05 4.mE0R 1e2ER
E(X®) 281Ed  1oeELz  2.21E(2
E(X%  BE2EQ7 216E4d  375E-M
E(xY) 6R1E07  1deEL2 244E-M

Mod e 2 87EAr -BABER -FL2E
Variance  2.81E0d  102ELR 2.20EAnG

Obs 152 277 Fak




Histogram for AIG

Histogram for AlG:a Histogram for AIG b Histogram for AlG ¢
T T T 450 T T T T 10l T T
40+
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301 1 8ol
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Period a.

-0.1 008 006 004 002 0 002 004 006 008 01

| Period b. | = Period c.

The histograms show that AIG has a unimodal
distribution in all three periods.
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Table 4: &£ moment General and Unimodal Bounds on Valigy in Periods a, b, and <.

General Bounds
—51% < VaRE%

—31.2%

< VaR!

< —0.1%
o < 0.2%

—14 5% < VaRgy, < 0.8%

Unimodal Bounds
—3.8% < VaRgy, < —1.2%
—23.8% < VaRgy, < —1.3%
—9.8% < Valgy < —0.6%

0.2



Bivariate Moment Problems

» Joint Probability Bounds: Bounds on
Pr(X1 < f; and X, < fp) for the non-negative variables X;
and Xp (X1, Xo > 0), given the mean, variance and
covariance, with the objective function

(X1, X2) = Lix;<t; and Xo<to}

where 1,6 € RT.

» VaR Probability Bounds: Bounds on Pr(wy X; + wp X < a)
for any X1, Xo € R2 given the mean, variance and covariance,
with or without information of expected payoff of exchange
option E[(X1 — X2)T] = . The objective function is

qb(Xlﬂ XQ) — ]I{W1X1—|—WQXQ Ea}

where wy, wo, v € RT and a € R.



Bivariate Moment Problems

b if Xe+Xo>a+ b
HX1,X0) =< Xg+Xo—a if a<Xi+Xo<a+b
0 it Xi+ X <a.

» Special cases: payoffs of call or put options

» This problem can be converted to a one variable moment
problem and solved numerically.

» We also can use the explicit formulae deduced by Cox (1991)
to compute the bounds.




Theorem Preparation

In order to numerically solve the semiparametric bounds, we
reformulate the corresponding semiparametric bound problem as a
sum of squares (SOS) program using the following two theories:

Theorem (Hilbert(1888))

Let p(x1,...,X,) be a quadratic polynomial. Then p(xq,
oy Xn) 2 0, ¥ xa, ..., xp € R ifand only if p(x1,...,xn) is a3 SOS
pofynomial.

Theorem (Diananda(1962))

Let p(xq,...,Xn) be a quadratic polynomial. If n <3, then

p(Xt, ..., X)) >0, ¥ x1,...,xp >0 ifand only if p(x3,...,x5) is a

S50S polynomial.




SOS Program (Multivariate)

» A polynomial
PIXL, X)) = D VXX

i €N

is said to be a SOS polynomial if
pX]_? qu}(]_?

for some polynomials g;(xi, ..., Xn).




Primal and Dual Problems

» Primal problem

Ple) — max(min) Ex(¢(X, X2)
such that Er(1) =1,
]E“}T(Xj) Juf” f — 1? 2?
0 (2) . (1)

E?T(X) Ju’f ’ f:1:2:~
Er( X1 Xo) = p12,
7w a probability distribution in D

» Dual problem [Popescu (2005)]

d(d) = min(max)yoo + yiop1 + Yorpe + ¥eors™ + yoors? + yiipo
such that
p(xi,x2) > (or <) ¢(x1,x2), ¥ (x1,%2) € D,

(2)

where the quadratic polynomial

P(X1,%0) = Yoo + Yi0X1 + Yo1Xo + ¥o0Xi + YooXb + Yi1X150.




Feasibility and Strong Duality

» Feasibility: The dual problem (2) is feasible if and only if ¥ is
a positive semidefinite matrix (i.e., all eigenvalues are greater
than or equal to zero), where ¥ is the moment matrix. If

D= R*Q, all elements of X are required to be non-negative.

I

Y= | opt?

2
| p2 P12 ,ué)_

» Strong Duality The solution to the dual is equivalent to the
primal in the sense that the numerical values of the dual is
equal to that of the primary, if and only if one can find 3
special case in which the constraints in the dual is strictly
satisfied.




Joint Probability Bounds on Pr(X; < £ and X; < 1)

» Upper Bounds

- . > >
d = min Yoo + Yiop1 + Yoipo + Jf’zo;ug ) 4 yowg )+ yipo

such that
p(x1,x) > 1,7 0<x3 < 11,0 <0 < B
p(xt,x2) 2 0,V xg,x > 0.

» Lower Bounds

2 2
d = max Yoo + Yiop1 + Yoo + yzo,uﬁ )+ J/UQPJE )+ Y11 1412

such that
plx1, ) <LVO<x <t,0< <t
p(x1, %) <0,V xg,x > 0.




Numerical Example of Probability Bounds

» Consider the American International Group (AlG). We find
bounds on the probability of joint extreme events,i e,
unanticipated poor asset returns and unexpectedly high
claims, Pr(r < t;,m < fp).

» Xi: Weighted Average Net Return. Suppose AlG's ;

it

portfolio contains 6 assets. For asset /, r!-G —r+ 1= 5T

r is the weighted average return:

» Xo: Margin. The margin on insurance business m is defined

as
m=1—LR,

where LR is the economic loss ratio.




AlG Example

The upper left plot shows the upper bound of Pr(r < t;, m < t,). The upper
right one is the CDF of bivariate normal with the same moments as AlG. The
ratio of the upper bound to the bivariate normal CDF is shown in the third

graph. The vertical axis of the graphs is probability. It is the ratio in the third
graph.




AlG Example (Continued)

The higher curve is the upper
bound on Pr(r < t;,m < ),
The lower curve is the CDF of
bivariate normal with the
same moments

as AlG.

x-axis stands for t1. And t2 is fixed
at E(m)— ko(m) where k=0.25,
0.5,..., 1.5, with k=0.25 on the
upper left and running to the
right and then down.
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Bounds on Joint Right-Tail Events

Bounds on PriX, >t,, X, >t,). The left and right graphs show bounds with
covariance of X1 and X2 equals 0.5 and -1, respectively. The vertical axis
stands for probability, and the horizontal axis is the number of
standard deviations from the mean, z. That is:

to=p +zop and i, =, + 20,
Cov0(1,)(2)= 05 Cov()(1,x2)= -1
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VaR Bounds on Pr(wy X1 + wp X5 < a)

» Upper Bounds

— . 0 0
dvap = MIN Yoo + Yiop1 + Yo1 o + J@UM& ) + Jr’oz,wg ) T Y1110

such that
plxi,x0) 2 LY X1, %0 s.t. wixp + woxo < 3
p(x1,x0) > 0, x1,x € R.

» Lower Bounds

2 2
dvap = Max Yoo + Yiop1 + Yorpo + Jf’zo;ug ) + Jf’owg ) + Y114412

such that
p(x1,x0) < 1,¥ xq,x0 s.t. wixg + woxo < 3
p(xt,x2) <0,V xq,x € R.




Numerical Example of VaR Bounds

We analyze the tail joint probability of total return of a portfolio
investing in the S&P 500 Index and the Dow Jones U.S. Small-Cap
Index.

Let X1 and X2 be the log-return of the S&P 500 Index and Dow Jones
U.S. Small-Cap Index in percentage per day.

For day t: Xi(t) =100 log(Si(t+1)=Si(t))
Their moments are as follows:
E(X,)=0.0059, E(X?)=1.2158
E(X,)=—0.2117, E(X3)=112.8609
E(X,X,) = 14161,  Cov(X;.X,) = 1.41736
Var(X;) = 1.2138, Var(X,) = 112.8160
p=10.1210, E((X{ — X5)") = 0.4464




Numerical Example of VaR Bounds

Suppose we invest 1/3 of our assets in the S&P 500 Index, 1/3
in the Dow Jones U.S. Small-Cap Index, and 1/3 in a risk-free
fund paying a flat 0.01 percent per day. Thus, our portfolio

daily return is:
1 1 1

— X, +=X,+=0.01
3 3 3

We now calculate the upper and lower bounds for the
probability when the portfolio return falls

Pr((1/3)X; +(1/3)X, + (1/3)0.01 < a)




Numerical Example of VaR Bounds

Bounds on Pr(1/3"X, + 1/3"X,+1/3"0.01<= a)

1 .—----------L-----------------:. --------------------------- ‘S
5 AR S— RRURSITS S—— BE I - So—

Probability
o

S s 5

—S— Upper bound w/o option info
—#— Upper bound with option info
—e«—Nomal VaR probability

R L e I L e b ot o Aot —— Lower bound with option info [f
BFF LTS IIRE IR ET IO R IO BI O —&— Lower bound w/o option info ||
0.05 :
-20 -16 -10 -6.2 0 A 10 15

The lines with —o— and —*— represent the upper and lower bounds on the
VaR probability, without and with using the exchange option information.




Numerical Example of VaR Bounds

The figure on the previous slide gives us an idea of how
likely the return of this portfolio will be lower thanain 1
day under different conditions.

Without the exchange option information (—o— curves):

—16% < VaR, 45 < 1%

With the exchange option information (—*— curves):

—6.2% < VaR, 45 < 0%




Maximum-Entropy Risk Neutral Probability

Li (2010) suggests to using the maximum-entropy approach to
calculate risk neutral probabilities for asset pricing.

Consider a market with n assets, whose prices at time 0 are:

Fly B2y i,
Assume there are m states of nature and discounted by the risk-
free rate, the payoff of asset i in state j is

z:(s;),2 =1, ..,nand 7 = 1,...,m

Let P be the physical probability measure and @ be an
equivalent risk neutral probability measures. The martingale
measure (@ can be chosen by minimizing the Kullback-Leibler
(Kullback and Leibler, 1951) information criterion

40 e,
B [dP log (dP)]




Maximum-Entropy Risk Neutral Probability

With this setup, the discrete risk-neutral probabilities © = [my, ms, ..., T,,] for the states of
nature s = [sy, 85,...,5.,] can be determined by solving the following maximum-entropy
problem:
- Z m;log
—[’-fri ’-frz .

e

subject to Z?r:,- =1
rils;)-my = foralli=1,.. . .,n

my = 0 foralls =1,...,m.




Pricing An European Call Option

Consider a non-dividend paying stock (Stock A) whose price follows a geometric
Brownian motion with spot price So = 20, volatility o= 0.15, and rate of return
K= 0.08. We further assume that the risk-free rate is rf = 0.04.

We first simulate the stock price at T:

ST = SD = |:l,-_4:—.;r? "IIIE:IT_FEWT

L

where Wr is a Wiener process under P.

We then solve the Maximum-Entropy risk neutral problem with one price
constraint where p1 = So = 20.




Maximum-Entropy Risk Neutral Probability for Stock A: 10,000 Simulations

x 107

2000 3000 4000 5000 6000 7000 8000 9000 10000

1000




Pricing An European Call Option

Consider an European call option written on stock A with strike price K=18
and exercise time T = 1. Based on the risk neutral measure and the present
value of the call option

g~ T max( St — K, 0)
we calculate the value of the call option as:

O =T Zma&:{ﬁq — K. 0) - my

=1
where m = 10, 000 for our case. Our estimation of the value of the call option
from the maximum-entropy distribution is 2.94. While following the Black-

Scholes model, the value of the call is 2.95.




Robustness Check

* Does it matter how many moments are
considered to calculate bounds?

— Check the bounds accuracy with known
distribution

e Stability experiments

— Examine the sensitivity of bounds with respect to
moment estimates by altering the data sample
Sizes.

* Long-tail distribution — Pareto with a=5 (or a=1), 8=10.
* Sample size n=25, 100, 500, and 1000.




General and unimodal Bounds on Beta Distribution
(a=2,b=3and0 =5)

2 moments 4 moments

The improvement of
bounds wears out after
4 or 6 moments.
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Stablility Analysis
General bounds on
p(t) < Pr(X <{) <p(t), for t > E{X)+ 2/ Var(X)

for Pareto distribution with a=5 and 0= 10, given 4 moments.

o = 5; sample size=25; 4-moment General Bounds o = 5; sample size=100; 4-moment General Bounds

L L L L 1 L L L L L 1 L L L L L 1 L L
8 0 12 14 16 12 20 22 24 - 10 12 14 16 18 20 22 24 26 28 30

o = 5; sample size=500; 4-moment General Bounds
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Stability Analysis (Continued)

General bounds on
plt) <Pr(X <) <%(t), for t = E{X)+ 2/ Var(X)
for Pareto distribution with a=1 and 6= 10, given 2 moments.

This distribution has no finite raw moments. We calculate the upper and lower bounds
on the distribution based on the “non-existent” moments approximated from samples.

o =1, sample size=25; 2-mom &nt = 1, sample size=100; 2-moment o = 1; sample size=500; 2-moment
1-W 1 " o
BT D Fugs
D.%/GDODOOO 10.93 Jo.0% oo
o ]
0.961 o =] 40.95 s ] H0.
o {0
0.541 [+ - 0
o o
2 _°g° 25 0bs -
go
08k 9? o 0.8
o O
nasii 8 0.
0.86F @ 0.86
&
0.24F © 0.84
0.82f LA
0.4 0.3

! L L L ! ! ! | | | . L L | L L L L L ! L
300 400 500 500 Too 200 500 1000 0. 400 &00 200 1000 1200 1400 1800 500 1000 1200 1400 1600 1800

A big proportion of the lower bound
dots fall above the true distribution.




Stability Analysis (Continued)

 Larger samples make the bounds estimation
more reliable and accurate.

* Reliable bounds could be provided when
samples with more than 500 observations are

analyzed.

* Moment method can be used to detect the
existence of higher moments.




Conclusion

We solve univariate and bivariate moment problems
numerically with SOS programming solver.

— Calculate semiparametric upper and lower general bounds
by reformulating problems as SOS programes.
* Provide the best bounds on Value-at-risk given moment information.

— Compute the improved bounds on a distribution when the
unimodal assumption is added.

* Effectively narrow the general bounds.
— Construct Maximum-Entropy distribution with given
moments.

* Provide a representative distribution which has given moments, but
otherwise uses as little information as possible.

* Price assets with Maximum-Entropy risk neutral probabilities.




Conclusion (Continued)

— Analyze two bound problems on bivariate distributions

* “100% confidence intervals” on extreme events given moments
and support

* Bounds on the sum of two variables given moments and
support.
— Other possible applications of our approach
* Default probabilities
* Prices of different fix-income securities
* Inventory and supply chain management

* Sensitivity analysis of the joint probabilities and VaR estimates
to model misspecification




Questions?

Thank you for your attention!




